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Chapter 1

The Euclidean space Rn

In Analysis 1 you have learned the fundamental concepts of differential and integral
calculus of real-valued functions in one real variable, known as Single Variable Calculus.
However, real-life phenomena often depend on a multitude of factors and it requires
more than just one variable to properly model such situations. This leads to the study
of the theory of differentiation and integration of functions in several variables, called
Multivariable Calculus. The mathematical stage on which the study of functions in
several variables unfolds is the n-dimensional Euclidean space Rn.

Before defining the n-dimensional Euclidean space and its intrinsic topology, let us
recall some basic notions commonly used in analysis and calculus.

N the natural numbers {1, 2, 3, 4, . . .},
Z the integers, i.e., signed whole numbers {. . . ,−2,−1, 0, 1, 2, . . .},
Q the rational numbers a

b
with a ∈ Z and b ∈ N,

R the real numbers,
C the complex numbers,

An open interval is an interval that does not include its boundary points and is
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6 CHAPTER 1. THE EUCLIDEAN SPACE Rn

denoted by parentheses. The open intervals are thus one of the forms

(a, b) = {x ∈ R : a < x < b},
(−∞, b) = {x ∈ R : x < b},
(a,+∞) = {x ∈ R : a < x},

(−∞,+∞) = R,

where a and b are real numbers with a ⩽ b. The interval (a, a) = ∅ is the empty set,
a degenerate interval. Open intervals are open sets in the topology of R.

A closed interval is an interval that includes all its boundary points and is denoted
by square brackets. Closed intervals take the form

[a, b] = {x ∈ R : a ⩽ x ⩽ b},
(−∞, b] = {x ∈ R : x ⩽ b},
[a,+∞) = {x ∈ R : a ⩽ x},

(−∞,+∞) = R,

Closed intervals are closed sets in the topology of R. Note that the interval R =
(−∞,+∞) is both open and closed at the same time.

A half-open interval is a finite interval that includes one endpoint but not the other.
It can be left-open or right-open, depending on which endpoint is excluded:

(a, b] = {x ∈ R : a < x ⩽ b},
[a, b) = {x ∈ R : a ⩽ x < b},

Note that half-open intervals are neither open nor closed sets in the topology of R.
Intervals of the form [a, b], [a, b), (a, b], (a, b) for a, b ∈ R with a ⩽ b are called

bounded intervals, whereas intervals like (−∞, b], (−∞, b), [a,+∞), and (a,+∞) are
unbounded intervals.

1.1 The vector space Rn

Given a positive integer n, the set Rn is defined as the set of all ordered n-tuples
(x1, . . . , xn) of real numbers. It is called the standard Euclidean space of dimension n,
or simply the n-dimensional Euclidean space.

We can represent an element of Rn either as an n-tuple, which is the same as a row
vector with n entries,

x = (x1, . . . , xn)

or as a column vector with n entries

x =


x1
...
xn

 .
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Both representations are common and widely used in the literature. We will generally
use column vectors to denote elements of Rn in calculations, and row vectors to denote
elements of Rn as input parameters of functions defined on Rn.

There are also different ways in which elements in Rn are denoted, the three most
common are

x, x, and x⃗.

In this text, we will predominantly use x for elements in R and x for elements in Rn

for n ⩾ 2.
If n = 1 then R1 = R corresponds to the real line.

0 x

If n = 2 then R2 corresponds to the 2-dimensional plane. A point in R2 is usually
written as either (x, y) or x = (x1, x2)⊤.

•
x =

(
x1
x2

)

x2

x1

If n = 3 then R3 corresponds to the 3-dimensional space. A point in R3 is usually
written as eitehr (x, y, z) or x = (x1, x2, x3)⊤.

•
x3

x2

x1

x =

x1
x2
x3


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The set Rn is an n-dimensional inner product vector space over the real numbers.
This means it is closed under addition, scalar multiplication, and endowed with an
inner product called the scalar product. The addition on Rn is defined coordinate wise
by

x + y =


x1
...
xn

+


y1
...
yn

 =


x1 + y1

...
xn + yn

 .
The multiplication of an element x ∈ Rn by a scalar λ ∈ R is defined as

λx = λ


x1
...
xn

 =


λx1
...

λxn

 .
The way in which addition and multiplication on Rn interact is described by the
distributive law, which asserts that

λ(x + y) = λx + λy. (Distributive Law)

The vector space Rn is also equipped with a scalar product ⟨., .⟩ : Rn × Rn → R
defined as

⟨x,y⟩ =
n∑

k=1
xkyk. (1.1)

The scalar product satisfies the three following properties:
1. Positive-definiteness: ⟨x,x⟩ ⩾ 0 for all x ∈ Rn, with equality only for x = 0.
2. Symmetry: ⟨x,y⟩ = ⟨y,x⟩ for all x,y ∈ Rn.
3. Bilinearity: ⟨αx + βy, z⟩ = α⟨x, z⟩ + β⟨y, z⟩ for all x,y, z ∈ Rn and α, β ∈ R.
In linear algebra, a vector x is also an n × 1 matrix. Its transpose, written x⊤ =

(x1, . . . , xn), is therefore a 1 × n matrix, and we can interpret the scalar product of
two vectors x,y as the matrix product of x⊤ and y:

⟨x,y⟩ = x⊤ · y = (x1, . . . , xn) ·


y1
...
yn

 .

1.2 The Euclidean distance on Rn

To be able to extend the analytical methods presented in Analysis 1 to the space Rn,
it is important to endow Rn with a topological structure. On R we have used the
absolute value to define a distance d(x, y) = |x − y|, which was then used to define
notions such as convergence and continuity in R. We seek to generalize the absolute
value and the distance to the space Rn. To do so, we will introduce the concepts of a
norm and a metric.
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Definition 1.1 (The Euclidean norm on Rn). The Euclidean norm on Rn is the
function ∥.∥2 : Rn → R defined by

∥x∥2 =
√

⟨x,x⟩ =
(

n∑
k=1

x2
k

) 1
2

. (1.2)

It measures the distance of the point x to the origin 0 = (0, . . . , 0).

Observe that in one dimension, the Euclidean norm of a real number is the same
as the absolute value of that number. In general, the Euclidean norm satisfies the
following properties:

1. Non-negativity: ∥x∥2 ⩾ 0 for all x ∈ Rn, with equality if and only if x = 0.
2. Homogeneity: ∥λ · x∥2 = |λ| · ∥x∥2 for all λ ∈ R and x ∈ Rn.
3. Triangle inequality: ∥x + y∥2 ⩽ ∥x∥2 + ∥y∥2 for all x,y ∈ Rn.

One of the most important properties of the scalar product is the Cauchy-Schwarz
inequality, which says that

|⟨x,y⟩| ⩽ ∥x∥2 ∥y∥2 (Cauchy-Schwarz)

The Euclidean norm ∥x∥2 also corresponds to the length of a vector x. The scalar
product ⟨x,y⟩ measures the angle between the two vectors x and y: if we designate θ
as the angle between x and y, then

⟨x,y⟩ = ∥x∥2∥y∥2 cos θ. (Angle Formula)

In particular if x and y are orthogonal vectors, i.e., θ = ±π/2, then ⟨x,y⟩ = 0. As a
consequence, we obtain the famous Pythagorean theorem, which says that if x and y
are orthogonal then

∥x + y∥2
2 = ∥x∥2

2 + ∥y∥2
2. (Pythagoras)

With the help of the Euclidean norm we can define a metric on Rn called the
Euclidean distance.

Definition 1.2 (The Euclidean distance on Rn). The Euclidean distance on Rn is the
function d(., .) : Rn × Rn → [0,∞) given by

d(x,y) := ∥x − y∥2 =
√

(x1 − y1)2 + . . .+ (xn − yn)2. (1.3)

The Euclidean distance captures the natural distance between two points in Rn. It
satisfies the following three properties:

1. Non-negativity: d(x,y) ⩾ 0 for all x,y ∈ Rn, with equality only when x = y.
2. Symmetry: d(x,y) = d(y,x).
3. Triangle inequality: d(x,y) ⩽ d(x, z) + d(y, z).
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1.3 The topology on Rn

The Euclidean distance d(x,y) induces a topology on Rn which underpins all analytical
considerations on Rn. In particular, notions such as continuity, convergence, differ-
entiablility and integrability are all defined in terms of this topology. The building
blocks of the topology on Rn are the so-called open balls.

Definition 1.3 (Open Ball). Let a ∈ Rn and r > 0. The set

B(a, r) = {x ∈ Rn : d(x, a) < r}

is called the open ball of radius r centered at a.

Open balls are the mathematical conceptualization of “nearness” and an important
use of open balls is to topologically distinguish distinct points: if x,y ∈ Rn and x ̸= y
then we can find a sufficiently small open ball centered at x and another sufficiently
small open ball centered at y such that these two balls don’t touch.

Open balls are instances of open sets. An open set is a set with the property that
if x is a point in the set then all points that are sufficiently near to x also belong to
the set. The mathematically precise definition is as follows:

Definition 1.4 (Open set). A subset U ⊆ Rn is open if for any point x ∈ U there
exists ε > 0 such that the open ball B(x, ε) is contained in U .

The empty set ∅ and the space Rn are open. Also, as was already mentioned, any
open ball B(a, r) is an open set.

Example 1.1 (Open Sets in Rn).
1. If a < b are real numbers then the interval

(a, b) = {x ∈ R : a < x < b}

is an open set. Indeed, if x ∈ (a, b), simply take r = min{x− a, b− x}. Both these
numbers are strictly positive, since a < x < b, and so is their minimum. Then the
“1-dimensional ball” B(x, r) = {y ∈ R : |x − y| < r} is a subset of (a, b). This
proves that (a, b) is an open set.

2. The infinite intervals (a,∞) and (−∞, b) are also open but the intervals

(a, b] = {x ∈ R : a < x ⩽ b} and [a, b] = {x ∈ R : a ⩽ x ⩽ b}

are not open sets.
3. The rectangle

(a, b) × (c, d) = {(x, y) ∈ R2 : a < x < b, c < y < d}

is an open set.

The antithetical notion to an open set is that of a closed set.

Definition 1.5 (Closed set). A subset C ⊆ Rn is closed if its complement Rn\C is
open.
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The empty set ∅ and the space Rn are the only sets that are both closed and open
at the same time. Intuitively, one should think of a closed set as a set that has no
“punctures” or “missing endpoints”, i.e., it includes all limiting values of points. For
instance, the punctured plane R2\{(0, 0)} is not a closed set.

An example of a closed set is the closed ball.

Definition 1.6 (Closed Ball). Let a ∈ Rn and r > 0. The set

B(a, r) = {x ∈ Rn : d(x, a) ⩽ r}

is called the closed ball of radius r centered at a. It is a closed set.

Example 1.2 (Closed Sets in Rn).
1. The closed interval

[a, b] = {x ∈ R : a ⩽ x ⩽ b}

is a closed set, because its complement R\[a, b] = (−∞, a) ∪ (b,∞) is an open set.
2. Infinite intervals with closed boundary [a,∞) and (−∞, b] are closed sets.
3. Halfopen intervals such as [a, b) or (a, b] are neither closed nor open sets.
4. Any set consisting of only finitely many points is a closed set.

The following two propositions describe how open and closed sets behave under
basic set manipulations such as unions, intersections, and set differences.

Proposition 1.1.
• If U ⊆ Rn is open and C ⊆ Rn is closed then U\C is open.
• If C ⊆ Rn is closed and U ⊆ Rn is open then C\U is closed.

Proposition 1.2.
• If U1, . . . , Uk ⊆ Rn are open then U1 ∪ . . . ∪ Uk and U1 ∩ . . . ∩ Uk are open.
• If C1, . . . , Ck ⊆ Rn are closed then C1 ∪ . . . ∪ Ck and C1 ∩ . . . ∩ Ck are closed.

To better grasp the difference between open sets and closed sets, we introduce the
concept of interior points, exterior points, and boundary points.

Definition 1.7 (Interior, Exterior, Boundary Points). Let S be a subset of Rn and x
a point in Rn.

(i) We call x an interior point of S if there exists r > 0 such that the ball B(x, r)
is contained in S.

(ii) We call x an exterior point of S if there exists r > 0 such that the ball B(x, r)
has empty intersection with S.

(iii) We call x a boundary point of S if it is neither an interior point nor an exterior
point for S. Equivalently, x is a boundary point of S if for every r > 0 the ball
B(x, r) has non-empty intersection with S without being entirely contained in
S.

Note that every point is either interior, exterior or on the boundary in relationship
to a set S.
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Figure 1.1: Illustration of the difference between interior, exterior and boundary points
of a set S.

Definition 1.8 (Interior). The set of all interior points of a set S is called the interior
of S and it is denoted by S̊.

Definition 1.9 (Boundary). The set of all boundary points of a set S is called the
boundary of S and we use ∂S to denote it.

Definition 1.10 (Closure). The closure of S, denoted by S, is the set of points x ∈ Rn

with the property that for all r > 0 one has

B(x, r) ∩ S ̸= ∅.

Equivalently, the closure of S is the union of all its interior points and all its boundary
points.

Figure 1.2: The interior, closure and boundary sets of a set S.

Clearly, we have the set inclusions S̊ ⊆ S ⊆ S. To summarize, the closure of S
is S plus its boundary, its interior is S minus its boundary, and the boundary is the
closure minus the interior:

S̊ = S\∂S S = S ∪ ∂S, and ∂S = S \S̊.

Proposition 1.3. Let S ⊆ Rn. The interior S̊ is the largest open set contained inside
of S. The closure S is the smallest closed set that has S as a subset.
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Corollary 1.1. A set is open if and only if it is equal to its interior. On the other
hand, a set is closed if and only if it is equal to its closure, which is the same as saying
that it contains all its boundary points.

Example 1.3 (Closure, Interior, Boundary).
1. The sets (0, 1), [0, 1], [0, 1), and (0, 1] all have the same closure, interior, and bound-

ary: the closure is [0, 1], the interior is (0, 1), and the boundary consists of the two
points 0 and 1.

2. The sets

{(x, y) ∈ R2 : x2 + y2 < 1} and {(x, y) ∈ R2 : x2 + y2 ⩽ 1}

both have the same closure, interior, and boundary: the closure is the disc of
equation x2 + y2 ⩽ 1, the interior is the disc of equation x2 + y2 < 1, and the
boundary is the circle of equation x2 + y2 = 1.

3. The set

U = {(x, y) ∈ R2 : |y| < x2}

describes the region between two parabolas touching at the origin, shown in Fig. 1.3.
The set is open, so U = Ů . The closure of U is given by

U = {(x, y) ∈ R2 : |y| ⩽ x2}.

In particular, the closure contains the point (0, 0).

Figure 1.3: The origin belongs to the closure of the shaded region.

4. The unit ball is open in Rn and is defined by

B1 = B(0, 1) = {x ∈ Rn : ∥x∥2 < 1}

Its boundary is the sphere ∂B1 = {x ∈ Rn : ∥x∥2 = 1}.
5. Let f : R → R be a continuous function. The set

Gf = {(x, f(x)) ∈ R2 : x ∈ R}
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is known as the graph of f and represents a curve in R2. We have G̊f = ∅. Therefore
Gf = ∂Gf . The closed graph theorem says that graph G̊f is a closed set in R2 if f
is a continuous function.

6. Let B = {x ∈ R2 : ∥x∥2 < 1} and I = [0, 5]. The set S defined by

S = B × I =
{
x ∈ R3 : x2

1 + x2
2 < 1 and 0 ⩽ x3 ⩽ 5

}
is a cylinder. The set S is neither closed nor open. The boundary of S is given by

∂S = ∂B × I︸ ︷︷ ︸
E1

∪ B × ∂I︸ ︷︷ ︸
E2

,

where

E1 =
{
x ∈ R3 : x2

1 + x2
2 = 1 and 0 ⩽ x3 ⩽ 5

}
,

E2 =
{
x ∈ R3 : x2

1 + x2
2 < 1 and x3 ∈ {0, 5}

}
.

Definition 1.11 (Neighborhood of a point in Rn). Let x ∈ Rn and U ⊆ Rn. If x is
an interior point of U then U is called a neighborhood of x.

1.4 Sequences in Rn

Limits of sequences and limits of functions are fundamental notions in calculus, as you
already have seen in Analysis 1. Let us extend these principles to higher dimensions.
We write N = {1, 2, 3, . . .} for the set of natural numbers.

Definition 1.12 (Sequences in Rn). A sequence of elements of Rn is a function k 7→ xk

that associates to every natural number k ∈ N an element xk ∈ Rn. We write (xk)k∈N
to denote a sequence in Rn.

Although (xk)k∈N is by definition a sequence of n-tuples, we can also think of it as
an n-tuple of sequences by considering each coordinate as an individual sequence,

(xk)k∈N =


(x1,k)k∈N

...
(xn,k)k∈N

 .
Definition 1.13 (Convergent sequence). A sequence (xk)k∈N of points in Rn converges
to a point x ∈ Rn if for every ε > 0 there exists N > 1 such that when k ⩾ N , then
d (xk,x) < ε. In this case we call x the limit of (xk)k∈N and write

lim
k→+∞

xk = x.

Note that not every sequence has a limit, but if a sequence does then this limit is
unique. Sequences that possess a limit are called convergent, whereas sequences that
don’t possess one are called divergent.

It follows from Definition 1.13 that a sequence (xk)k∈N converges to x if and only
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if the sequence of distances d (xk,x) converges to 0, i.e.,

lim
k→+∞

xk = x ⇐⇒ lim
k→+∞

d (xk,x) = 0.

Convergence is also observed coordinate wise: A sequence (xk)k∈N converges to x if
and only if each coordinate of (xk)k∈N converges to the respective coordinate of x.
More precisely, if

(xk)k∈N =


(x1,k)k∈N

...
(xn,k)k∈N

 and x =


x1
...
xn


then

lim
k→+∞

xk = x ⇐⇒ lim
k→+∞

xi,k = xi for all i = 1, . . . , n.

Example 1.4 (Convergent and divergent sequences in Rn).
1. The sequence (xk)k∈N given by

xk =

 e−k

k
k+1

1√
k2−k−k


converges as k → +∞ to the limit

x =

 0
1

−2

 ,
because limk→+∞ e−k = 0, limk→+∞

k
k+1 = 1, and limk→+∞

1√
k2−k−k

= −2.
2. The sequence (xk)k∈N given by

xk =
(

0
1−(−1)k

2

)

diverges because it diverges in the second coordinate.

The following properties describe the arithmetic operations of sequences in the n-
dimensional Euclidean space and tell us that limits cooperate nicely with the vector
space structure of Rn.
Properties of limits of sequences. Let (xk)k∈N and (yk)k∈N be sequences in Rn

and let (λk)k∈N be a sequence in R.
1. Addition of sequences: If (xk)k∈N and (yk)k∈N both converge then so does

(xk + yk)k∈N and

lim
k→+∞

xk + yk = lim
k→+∞

xk + lim
k→+∞

yk.

2. Multiplication of sequences: If (xk)k∈N and (λk)k∈N both converge then so
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does (λkxk)k∈N and

lim
k→+∞

λkxk =
(

lim
k→+∞

λk

)
·
(

lim
k→+∞

xk

)
.

3. Inner product of sequences: If (xk)k∈N and (yk)k∈N both converge then so
does (⟨xk, yk⟩)k∈N and

lim
k→+∞

⟨xk, yk⟩ =
〈

lim
k→+∞

xk, lim
k→+∞

yk

〉
.

Definition 1.14 (Cauchy sequences). A sequence (xk)k∈N is a Cauchy sequence if for
every ε > 0 there exists N > 1 such that k, l ⩾ N implies d (xk,xl) < ε.

Theorem 1.1. Every convergent sequence (xk)k∈N is a Cauchy sequence and every
Cauchy sequence is convergent.

Proposition 1.4. Let S ⊆ Rn be a non-empty set and suppose x ∈ ∂S is a boundary
point of S. Then there exists a sequence of elements in S̊, x1,x2,x3, . . . ∈ S̊, such that

lim
k→+∞

xk = x.

The following example provides an illustration of the content of Proposition 1.4.

Example 1.5. Consider the open ball of radius 5 centered at the origin in R2,

B(0, 5) = {x ∈ R2 : ∥x∥2 < 5} = {(x, y) ∈ R2 : x2 + y2 < 25}.

The boundary of B((0, 0), 5) is the circle of radius 5 centered at the origin, i.e.,

∂B(0, 5) = {x ∈ R2 : ∥x∥2 = 5} = {(x, y) ∈ R2 : x2 + y2 = 25}.

Any point x ∈ ∂B(0, 5) of this circle takes the form

x =
(

5 cos θ
5 sin θ

)
, for some θ ∈ [0, 2π).

We can define a sequence

xk =
( 5k

k+1 cos θ
5k

k+1 sin θ

)
,

and note that limk→+∞ xk = x. So we see that x1,x2,x3, . . . is a sequence of points
inside the open ball B(0, 5) converging to the point x on the border .

Proposition 1.5. Let S ⊆ Rn be a non-empty subset of Rn and let (xk)k∈N be a
sequence of elements in S. If (xk)k∈N converges then the limit limk→+∞ xk = x must
belong to S, the closure of S.

Example 1.6. Consider the “halfopen” rectangle

S = [0, 1] × [0, 1).
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This is not a closed set, because the point (2
3 , 1), for example, is in the boundary ∂S

but not in S itself. Moreover, the sequence(
2
3
1
2

)
,

(
2
3
2
3

)
,

(
2
3
3
4

)
,

(
2
3
4
5

)
,

(
2
3
5
6

)
, . . .

is a sequence of points in the interior of S that converge to the point (2
3 , 1), which is

not part of S, but it is part of the closure of S.
Definition 1.15 (Bounded set). A subset E ⊆ Rn is bounded if it is contained in a
ball of finite radius centered at the origin:

E ⊆ B(0, R) for some R < ∞.

Note that a closed set need not be bounded. For instance, the interval [0,∞) is
closed, but it is not a bounded.
Definition 1.16 (Compact set). A subset C ⊆ Rn is compact if it is closed and
bounded.

Compactness is the basic "finiteness criterion" for subsets of Rn. An important char-
acterization of compact sets in Euclidean spaces is given by the Bolzano-Weierstrass
theorem. Before we can state this theorem, we need to recall what is a subsequence.
Definition 1.17 (Subsequence). A subsequence of a sequence (xk)k∈N is any sequence
of the form (xki

)i∈N, where (ki)i∈N is a strictly increasing sequence of positive integers.
If a sequence converges then any subsequence of it also converges to the same limit.

Theorem 1.2 (Bolzano-Weierstrass theorem in Rn). Let C ⊆ Rn be compact. Any
sequence (xk)k∈N of elements in C possesses a convergent subsequence (xki

)i∈N whose
limit is in C.

Definition 1.18 (Bounded sequences in Rn). A sequence (xk)k∈N is bounded if there
exists a constant C > 0 such that ∥xk∥2 ⩽ C for any k ∈ N.

Note that every convergent sequence is a bounded sequence, but the opposite is
in general not true. For example, the sequence xk = (−1)k is bounded and does not
converge. The following is an immediate corollary of the Bolzano-Weierstrass theorem.

Corollary 1.2. Each bounded sequence (xk)k∈N in Rn has a convergent subsequence
(xki

)i∈N.





Chapter 2

Real-valued functions in Rn

Multivariable calculus, also known as multivariate calculus, is the extension of calculus
in one variable to calculus with functions of several variables. We start by defining
real-valued functions in more than one variable.

2.1 Definition

Definition 2.1 (Real-valued function on E ⊆ Rn). Let E be a non-empty subset of
Rn. A function f : E → R that assigns to every element x ∈ E a unique real number
y = f(x) is called a real-valued function on E.

Given a function f : E → R, the domain of f is E, denoted dom(f) or dom f . In
theory, the domain should always be a part of the definition of the function rather
than a property of it, but in practice it is often the case that the domain is inferred
by the description of the function (see Examples 2.1 and 2.3 below).

The image (sometimes also called the range) of a function f is the set of all the
output values that f produces. We denote it by Im(f) and it is formally defined as

Im(f) = {f(x) : x ∈ E} = {y ∈ R : ∃x ∈ E with f(x) = y}.

Example 2.1. Let us find and sketch the domain of the function

f(x, y) =
√
x+ y + 1
(x− 1) .

The expression for f makes sense if the denominator is not 0 and the quantity under
the square root sign is nonnegative. So the domain of f is:

dom(f) = {(x, y) ∈ R2 : x+ y + 1 ⩾ 0, x ̸= 1}.

The inequality x+ y + 1 > 0, or y > −x− 1, describes the points that lie on or above
the line y = −x − 1, while x ̸= 1 means that the points on the line x = 1 must be
excluded from the domain. See Fig. 2.1 for a sketch of this region.

19
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dom(f)

x

y

x + y + 1 = 0
x = 1

−1

−1

Figure 2.1: The domain of the function f(x, y) =
√

x+y+1
(x−1)

.

The relationship between the domain and the image of a function is described by
its graph. We use G(f) to denote the graph of a function f : E → R and it is given by

G(f) =
{(

x
f(x)

)
: x ∈ D

}
⊆ Rn+1.

Note that the graph of f is a subset of Rn+1. More precisely, the graph is the
hypersurface in Rn+1 corresponding to the set of all points (x1, . . . , xn, xn+1)⊤ ∈ Rn+1

that satisfy the equation

xn+1 = f(x1, . . . , xn).

Example 2.2. Consider the equation x+ y = z; as you learned in linear algebra, the
solutions to this equation describe a plane in R3. Now, compare this with the function
f(x, y) = x + y, a real-valued function in two variables. By definition, the graph of
f(x, y) consists of points (x, y, z) ∈ R3 where z = f(x, y). For f(x, y) = x + y, this
gives the equation of the plane x+y = z. Thus, the graph of f(x, y) = x+y is exactly
the plane in R3 determined by the equation x+ y = z.

Example 2.2 connects what you studied in linear algebra, where you worked with
linear equations like x+ y = z, to what you’re learning now in multivariable calculus.
But there’s more! With multivariable functions, you can describe not just planes, but
much more complex geometric surfaces, as this next example illustrates.

Example 2.3. Consider the real-valued function f(x, y) =
√

1 − x2 − y2, which is a
function in 2 variables. The natural domain of this function is dom(f) = {(x, y) ∈
R2 : x2 + y2 ⩽ 1}, which is the closed disc of radius 1 centered at the origin. The
image of f is Im(f) = [0, 1] and the graph G(f) = {(x, y, z) ∈ D × R, z = f(x, y)}
coincides with the set of solutions to the equations

x2 + y2 + z2 = 1 and z ⩾ 0.

In other words, the graph of the function is a semi-sphere, see Fig. 2.2 below.
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Figure 2.2: Graph of the function f(x, y) =
√

1 − x2 − y2.

Example 2.4. In physics, the functions f : Rn → R are often called scalar fields.
The gravitational potential of a mass or the electric potential of an electric charge are
examples of scalar fields:

ϕ : R3\{0} → R, ϕ(x) = k

∥x∥2

for a real constant k. In mechanics, we often consider systems where the energy is
conserved (Hamiltonian systems). For the movement of a particle of mass m in space,
subject to the potential V (x), its energy is a real-valued function of its momentum
p = mv here v is the velocity and x the position in space:

E : Rn × Rn → R, E(p,x) = ∥p∥2
2

2m + V (x).

The movement follows the lines at which the energy E is constant. These lines are
called “contour lines” and they are special cases of so-called level sets, which we define
and discuss next.

2.2 Level Sets

Definition 2.2 (Level set). Let f : E → R, E ⊆ Rn(E ̸= ∅). Given a real number
c ∈ Im(f), we call the set

Lc(f) = {x ∈ D : f(x) = c} = f−1({c})

the level set of f at height c. If c /∈ Im(f), then Lc(f) = ∅.
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Figure 2.3: The figure displays the graph of a function in 2 variables together with an
illustration of its level curves in the xy-plane. One can also think of level curves as the
projection of the horizontal traces onto the xy-plane, where a horizontal trace is a line
formed by intersecting the graph of the function with a plane parallel to the xy-plane.

Level sets of functions in 2 variables f : R2 → R are sometimes also called level
curves (or contour lines). It represents all the points where f has "height" c. A
collection of contour lines is called a contour map. Contour maps are very helpful for
visualizing functions, and they are most descriptive if the level curves are drawn for
equally spaced heights, see Fig. 2.4.

Figure 2.4: Contour map of participation as a function in two variables, the longitude
and latitude coordinates on earth.

In summary, we now have learned of two ways of graphically representing a real-
valued functions in two variables. The first way is by its graph, which is a hypersurface
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in R3, and the second is by a contour map, the projection of its contour lines onto the
plane R2. In Fig. 2.5 below you can see these two methods juxtaposed.

(2-x^3+6*y^4+y^3+x^4+6*x^4*y^2)*exp(-x^2-y^2*1.2)

–2

–1

0

1

2

x

–2

–1

0

1

2

y

0

1

2

–2

–1

1

2

y

–2 –1 1 2

x

Figure 2.5: Depiction of graph (left) and contour diagram (right) of the same function
in 2 variables.

Example 2.5. Let f(x, y) = xy−1√
y−x2

, whose domain is dom(f) = {(x, y) ∈ R2 : y >
x2}. Notice that dom(f) is open and unbounded.

Figure 2.6: The figure displays a series of level curves for the function f(x, y) = xy−1√
y−x2

passing through the point (1, 1). As we will explore subsequently, this indicates that
the limit of f(x, y) as (x, y) approaches (1,1) is not well-defined.
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2.3 Limits of functions

Definition 2.3. Let f : E → R with E ⊆ Rn. We say that f is defined in a neighbor-
hood of x0 ∈ Rn if x0 is an interior point of E ∪ {x0}. That is, there exists δ > 0 such
that B(x0, δ) ⊆ E ∪ {x0}.

In the above definition, it is possible that x0 /∈ E. In other words, it is possible
for a function to be defined in a neighborhood of x0 ∈ Rn without being defined at x0
itself.

Example 2.6. Consider the function f(x) = 1
∥x∥ whose domain equals dom(f) =

{x ∈ Rn : ∥x∥ ≠ 0} = Rn\{0}. Although this function is not defined at 0, it is defined
in a neighborhood of 0.

We are concerned with points where the function is defined in a neighborhood
around the point, because this is necessary to properly define the limit of a function at
that point. If the function is not defined in the neighborhood of a point, then it is not
always possible to talk about the limit of the function at that point without running
into mathematical contradictions.

Definition 2.4 (Limit of a function). Let E be a subset of Rn, f : E → R a function
with domain E and assume f is defined in a neighborhood of the point x0 ∈ Rn. We
say that f has a limit l ∈ R at x0 and write

lim
x→x0

f(x) = l,

if for all ε > 0 there exists δ > 0 such that for all x ∈ E,

0 < d(x,x0) ⩽ δ =⇒ |f(x) − l|⩽ ε

Note that the limit of a function at a point does not always exist. But if it does
exists then it is unique, which means that a function has at most one limit at a given
point.

Example 2.7. Let f : R2 → R be the function defined by

f(x, y) =


x3+y3

x2+y2 if (x, y) ̸= (0, 0)
0 if (x, y) = (0, 0)

Let’s calculate its limit as (x, y) approaches (0, 0). We will learn several different
methods of finding the limit of a function at a point (see, for example, the Squeeze
Theorem below), but the most standard method consists of simply verifying Defini-
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tion 2.4. Given the relation 0 ⩽
√
x2 + y2, we have

|f(x, y)| = |x+ y| |x2 − xy + y2|
x2 + y2 ⩽ (|x| + |y|)x

2 + |x||y| + y2

x2 + y2

⩽ (|x| + |y|)
x2 + |x||y| + y2 + 1

2(|x| − |y|)2

x2 + y2

= (|x| + |y|)
3
2x

2 + 3
2y

2

x2 + y2

⩽ 2
√
x2 + y2

3
2x

2 + 3
2y

2

x2 + y2 = 3
√
x2 + y2 = 3∥(x, y)∥2.

This shows that as long as δ < ε
3 we have d((x, y), (0, 0)) < δ =⇒ |f(x, y)| ⩽ ε.

According to Definition 2.4, this means exactly that lim(x,y)→(0,0) f(x, y) = 0.

Proposition 2.1 (Characterization of limits by sequences). Let E ⊆ Rn,x0 ∈ Rn

and assume f : E → R defined on a neighbourhood of x0, and l ∈ Rn. The following
statements are equivalent:

1. limx→x0 f(x) = l.
2. limk→∞ f(xk) = l for every sequence (xk)k∈N in E\{x0} with limk→∞ xk = x0.

Properties of limits of functions. Assume limx→x0 f(x) and limx→x0 g(x) exist.
1. Linear combinations: For constants α, β ∈ R, we have

lim
x→x0

(αf(x) + βg(x)) = α
(

lim
x→x0

f(x)
)

+ β
(

lim
x→x0

g(x)
)

2. Products:

lim
x→x0

(f(x) · g(x)) =
(

lim
x→x0

f(x)
)

·
(

lim
x→x0

g(x)
)
.

3. Quotients: If limx→x0 g(x) ̸= 0, then

lim
x→x0

(
f(x)
g(x)

)
= limx→x0 f(x)

limx→x0 g(x) .

4. Compositions: Let a = (a1, . . . , an) ∈ Rn and b = (b1, . . . , bn) ∈ Rn be given. If
limx→a f(x) exists, and gi : R → R are functions such that limx→bi

gi(x) = ai for
each i, then

lim
x→b

f(g1(x1), g2(x2), . . . , gn(xn)) = lim
x→a

f(x).

Example 2.8. Let us calculate

lim
(x,y)→(−3,4)

1 + xy

1 − xy
.

Since lim(x,y)→(−3,4) x = −3 and lim(x,y)→(−3,4) y = 4, it follows from properties 1 and 2
of limits of functions that

lim
(x,y)→(−3,4)

1 + xy = 1 +
(

lim
(x,y)→(−3,4)

x
)(

lim
(x,y)→(−3,4)

y
)

= 1 + (−3) · 4 = −11.
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Similarly, we obtain lim(x,y)→(−3,4) 1 − xy = 13. Since the limit of the numerator
and denominator exist and the denominator does not converge to 0, it follows from
property 3 of limits of functions that

lim
(x,y)→(−3,4)

1 + xy

1 − xy
= lim(x,y)→(−3,4) 1 + xy

lim(x,y)→(−3,4) 1 − xy
= −11

13 .

2.4 Techniques for finding limits of functions

Example 2.9 (The problem with limits in several variables). Let f : R2 → R2 be a
function in two variables; we would like to determine the limit

lim
(x,y)→(0,0)

f(x, y).

A (naïve) idea is to compute the two iterated limits:

lim
x→0

lim
y→0

f(x, y) or lim
y→0

lim
x→0

f(x, y).

If these two limits exist and coincide, one might then be led to believe that the limit of
the function at (0, 0) is equal to 0. However, this is note true! For example, consider
the function

f(x, y) =


xy
x2+y2 , if (x, y) ̸= (0, 0),
0, if (x, y) = (0, 0).

For this particular function, we find that the iterated limits are:

lim
x→0

lim
y→0

f(x, y) = lim
x→0

lim
y→0

xy

x2 + y2 = lim
x→0

0
x2 + 0 = 0,

lim
y→0

lim
x→0

f(x, y) = lim
y→0

lim
x→0

xy

x2 + y2 = lim
y→0

0
0 + y2 = 0.

However, instead having the two variables approach 0 one after the other, we can have
them approach zero simultaneously, for example along the diagonal x = y. In this
case, setting both x and y equal to t and letting t go to zero, we obtain

lim
t→0

f(t, t) = lim
t→0

t · t
t2 + t2

= lim
t→0

1
2 = 1

2 ,

which yields a different result. Since we can approach (0, 0) in two different ways and
obtain different results, it means that the limit does not exist.
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→ 0

→ 1
2

→ −1
2

A next idea would be to test all possible directions,

lim
t→0

f(αt, βt),

with α, β ∈ R not both zero (thus covering all lines of equation βx − αy = 0, which
are all lines passing through 0). If all the limits along all the lines passing through 0
exist and coincide, can we conclude that the limit exists? The answer is still no! This
is because we might obtain a different result when following a trajectory that is not a
straight line.

→ 0 → 1
2

For example, if f : R2 → R is defined by

f(x, y) =


xy2

x2+y4 , if (x, y) ̸= (0, 0),
0, if (x, y) = (0, 0).

then for any α, β ∈ R, we have

lim
t→0

f(αt, βt) = lim
t→0

αβ2t3

α2t2 + β4t4
.

If α = 0, then β ̸= 0 and we obtain 0. Otherwise,

lim
t→0

f(αt, βt) = lim
t→0

αβ2t

α2 + β4t2
= 0
α + 0 = 0.

We obtain 0 in all directions. However,

lim
t→0

f(t2, t) = lim
t→0

t4

t4 + t4
= 1

2 .

Again, this means that the limit does not exist.
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2.4.1 The squeeze theorem

Theorem 2.1 (Squeeze theorem - théorème des gendarmes). Let E ⊆ Rn, and func-
tions f, g, h : E → R be defined on a neighborhood of x0 ∈ Rn. If

lim
x→x0

g(x) = lim
x→x0

h(x) = l

and there exists ε > 0 such that for all x ∈ E,

0 < d(x,x0) < ε =⇒ g(x) ⩽ f(x) ⩽ h(x)

then

lim
x→x0

f(x) = l.

Example 2.10. Consider f : R2\{(0, 0)} → R defined by

f(x, y) = x4y3

x4 + y12 .

Let’s discuss the limit

lim
(x,y)→(0,0)

f(x, y).

We can estimate

0 ⩽ f(x, y) = x4y3

x4 + y12 ⩽
x4y3

x4 = y3.

So if we define

g(x, y) = 0 and h(x, y) = y3

then g(x, y) ⩽ f(x, y) ⩽ h(x, y). Since lim(x,y)→(0,0) g(x, y) = lim(x,y)→(0,0) h(x, y) = 0,
it follows from the Squeeze Theorem that lim(x,y)→(0,0) f(x, y) = 0.

2.4.2 Using Polar coordinates

Polar coordinates are useful when given a function in two variables involving terms
like x2 + y2, representing the distance from the origin, or when the function behaves
similarly along all directions (i.e., has radial symmetry). This simplifies the analysis
by converting the problem into one of radial distance and angular symmetry, making
it easier to evaluate limits as the distance from the origin approaches zero.

The following version of the squeeze theorem involving polar coordinates allows
us to bound a function in terms of its distance from the origin, making it easier to
evaluate limits as the distance approaches zero.

Theorem 2.2 (Squeeze theorem in polar coordinates). Let E ⊆ R2 and (x0, y0) ∈ R2.
Assume f : E → R is a function that is defined in the neighborhood of (x0, y0) and let
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l ∈ R. Then,

lim
(x,y)→(x0,y0)

f(x, y) = l

if and only if there exists ε > 0 and a function ψ : (0, ε) → [0,∞) such that

(i) limr→0+ ψ(r) = 0, and

(ii) for all θ ∈ [0, 2π) we have |f(x0 + r cos θ, y0 + r sin θ) − l| ⩽ ψ(r)

Example 2.11. Consider f : R2\{(0, 0)} → R defined by

f(x, y) = x2y

x2 + y
5
2
.

Let’s discuss the limit

lim
(x,y)→(0,0)

f(x, y).

We switch to polar coordinates and get

f(r cos θ, r sin θ) = r3 cos2 θ sin θ
r2 cos2 θ + r

5
2 sin 5

2 θ

= r cos2 θ sin θ
cos2 θ + r

1
2 sin 5

2 θ
.

Thus,

|f(r cos θ, r sin θ)| = r cos2 θ| sin θ|
cos2 θ + r

1
2 sin 5

2 θ
⩽
r cos2 θ| sin θ|

cos2 θ
= r| sin θ| ⩽ r.

Taking l = 0 and ψ(r) = r, we see that the hypothesis of the squeeze theorem in polar
coordinates is satisfied, and conclude that

lim
(x,y)→(0,0)

f(x, y) = 0.

2.4.3 Using Taylor’s theorem

Taylor’s theorem (which you have learned in Analysis I) can be useful to find limits
because it approximates a function near a point by a polynomial, simplifying the
analysis before applying the squeeze theorem. For convenience, let us quickly recall
the statement of Taylor’s theorem.

Theorem 2.3 (Taylor’s theorem – single variable case). Let k ∈ N. Suppose I ⊆ R
is an open interval and f : I → R is a function of class Ck(I). Then for any a ∈ I we



30 CHAPTER 2. REAL-VALUED FUNCTIONS IN Rn

have

f(x) =

kth-order approximation︷ ︸︸ ︷
k∑

j=1

f (j)(a)
j! (x− a)k +

remainder︷ ︸︸ ︷
rk(x)

︸ ︷︷ ︸
kth-order expansion

where rk(x) is an “error” term satisfying limx→a
rk(x)

|x−a|k = 0.

Example 2.12. Calculate the following limits if they exist:
(a) lim(x,y)→(0,0)

x2+ln(1+y2)√
x2+y2

(b) lim(x,y)→(0,0)
1−e(x3)

x2+y2

(a) The first-order expansion of ln(1 + x) around a = 0 is

ln(1 + x) = x+ r1(x)

where limx→0
r1(x)

x
= 0. We obtain

lim
(x,y)→(0,0)

x2 + ln(1 + y2)√
x2 + y2 = lim

(x,y)→(0,0)

x2 + y2 + r1(y2)√
x2 + y2

= lim
(x,y)→(0,0)

x2 + y2
√
x2 + y2 + lim

(x,y)→(0,0)

r1(y2)√
x2 + y2 = 0 + 0 = 0.

The second limit is zero because, for (x, y) ̸= (0, 0),

−|r1(y2)|
|y|

⩽
r1(y2)√
x2 + y2 ⩽

|r1(y2)|
|y|

with

lim
(x,y)→(0,0)

|r1(y2)|
|y|

= lim
(x,y)→(0,0)

|y| · lim
(x,y)→(0,0)

|r1(y2)|
|y2|

= 0 · 0 = 0.

By the squeeze theorem, it follows that

lim
(x,y)→(0,0)

r1(y2)√
x2 + y2 = 0.

(b) The first-order expansion of ex around a = 0 is

ex = 1 + x+ r1(x)

where limx→0
r1(x)

x
= 0. We obtain

lim
(x,y)→(0,0)

1 − ex3

x2 + y2 = lim
(x,y)→(0,0)

1 − 1 − x3 − r1(x3)
x2 + y2 = lim

(x,y)→(0,0)

−x3 − r1(x3)
x2 + y2 .
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Now, for (x, y) ̸= (0, 0),

−|x3| + |r1(x3)|
|x2|

⩽
−x3 − r1(x3)
x2 + y2 ⩽

|x3| + |r1(x3)|
|x2|

with

lim
(x,y)→(0,0)

|x3| + |r1(x3)|
|x2|

=
(

lim
(x,y)→(0,0)

|x3|
|x2|

)
+
(

lim
(x,y)→(0,0)

|r1(x3)|
|x2|

)
= 0 + 0 = 0.

The squeeze theorem therefore ensures that

lim
(x,y)→(0,0)

−x3 − r1(x3)
x2 + y2 = 0.

2.4.4 Using change of variables

The following proposition enables us to convert limits in two variables into limits in a
single variable.

Proposition 2.2 (Composition with Functions of a Single Variable). Let E ⊆ R2

and let g : E → R be defined in a neighborhood of (x0, y0) ∈ R2. Let I ⊆ R be such
that I ⊆ g(E) and let φ : I → R be defined in a neighborhood of l ∈ R. Finally, let
f : E → R be defined by f(x, y) = φ(g(x, y)). If

lim
(x,y)→(x0,y0)

g(x, y) = l and lim
t→l

φ(t) exists,

then

lim
(x,y)→(x0,y0)

f(x, y) = lim
t→l

φ(t).

Example 2.13. Let f : R2\{(0, 0)} → R be defined by

f(x, y) = tan(3x2 + y2)
3x2 + y2 .

We analyze the limit

lim
(x,y)→(0,0)

f(x, y).

If we define g(x, y) = 3x2 + y2, then by properties of limits we have

lim
(x,y)→(0,0)

g(x, y) = 3
(

lim
(x,y)→(0,0)

x
)2

+
(

lim
(x,y)→(0,0)

y
)2

= 3 · 02 + 02 = 0.

Define φ : R\{0} → R by

φ(t) = tan(t)
t

.
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Then we have f(x, y) = φ(g(x, y)). Hence, in light of Proposition 2.2, we have

lim
(x,y)→(0,0)

tan(3x2 + y2)
3x2 + y2 = lim

t→0

tan(t)
t

.

Now,

lim
t→0

tan(t)
t

L’Hôpital’s Rule= lim
t→0

1
cos2(t)

1 = 1.

Thus,

lim
(x,y)→(0,0)

f(x, y) = 1.

Figure 2.7: Graph of the function f(x, y) = xy ln(|x| + |y|).

Example 2.14. Let us demonstrate that the limit of the function f : R2 → R defined
by

f(x, y) =
xy ln(|x| + |y|) if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

is zero as (x, y) approaches (0, 0) (see Fig. 2.7). Note that for every point (x, y) with
0 <

√
x2 + y2 < 1 we have |xy| ⩽ |x| + |y|. This implies that for any such (x, y) we

have the estimate

0 ⩽ |f(x, y)| = |xy ln(|x| + |y|)| ⩽ (|x| + |y|)| ln(|x| + |y|)|.

So if we define

g(x, y) = −(|x| + |y|)| ln(|x| + |y|)| and h(x, y) = (|x| + |y|)| ln(|x| + |y|)|

then we see that

0 <
√
x2 + y2 < 1 =⇒ g(x, y) ⩽ f(x, y) ⩽ h(x, y).
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Substituting t for |x| + |y|, it follows from Proposition 2.2 that:

lim
(x,y)→(0,0)

±(|x| + |y|)| ln(|x| + |y|)| = lim
t→0+

t ln t = 0,

where we used the fact limt→0+ t ln t = 0, which can be verified using L’Hôpital’s Rule.
In other words lim(x,y)→(0,0) g(x, y) = lim(x,y)→(0,0) h(x, y) = 0. Invoking the Squeeze
Theorem, we conclude that lim(x,y)→(0,0) f(x, y) = 0.

2.4.5 Testing along polynomial paths

Testing paths of the form (tα, tβ) is useful for evaluating limits of functions in two
variables because these paths allow us to explore how the function behaves along
different directions approaching the origin. By adjusting the exponents α and β, we
can test a variety of trajectories that the function might take, revealing whether the
limit depends on the direction of approach.

Example 2.15. Let f : R2\{(0, 0)} → R be defined by

f(x, y) = x3y3

x4 + y12 .

Our goal is to determine the limit

lim
(x,y)→(0,0)

f(x, y).

First, let us test all linear paths by considering

lim
t→0

f(αt, βt),

with α, β ∈ R not both zero. In this case, we get

lim
t→0

f(αt, βt) = lim
t→0

α3β3t6

α4t4 + β12t12 = lim
t→0

α3β3t2

α4 + β12t8
= 0.

We see that all linear paths yield the same limit. Therefore, to demonstrate that the
limit does not exist, we must consider non-linear paths.

When dealing with a denominator containing different powers of x and y, a good
approach is to examine paths of the form (tα, tβ) for various values of α, β ∈ (0,∞).
This gives

lim
t→0

f(tα, tβ) = lim
t→0

t3α+3β

t4α + t12β
.

First, we can take α = β = 1. In this case we have

lim
t→0

f(t, t) = lim
t→0

t6

t4 + t12 = lim
t→0

t2

1 + t8
= 0.

Next, we choose α and β so that the powers appearing in the denominator match. For
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us, this means we want to find α and β such that

4α = 12β.

For example, this is achieved by taking α = 3 and β = 1. Then,

lim
t→0

f(t3, t) = lim
t→0

t12

t12 + t12 = 1
2 .

Since α = β = 1 and α = 3, β = 1 yield different results, we conclude that the limit
does not exist.

2.5 Continuity at a Point
The purpose of this section is to introduce and discuss continuous functions in several
variables.
Definition 2.5 (Continuous function at a point). Let E ⊆ Rn and let x0 be an interior
point of E. A function f : E → R is said to be continuous at x0 if

lim
x→x0

f(x) = f(x0).

Definition 2.6 (1st equivalent definition). Let x0 be an interior point of E. A function
f : E → R is continuous at x0 if and only if, for every real number ε > 0, there exists
a real number δ > 0 such that for all x ∈ E,

d(x,x0) ⩽ δ =⇒ |f(x) − f(x0)|⩽ ε.

Definition 2.7 (2nd equivalent definition). Let x0 be an interior point of E. A function
f : E → R is continuous at x0 if and only if, for every sequence (ak)k∈N of elements of
E we have

lim
k→+∞

ak = x0 =⇒ lim
k→+∞

f(ak) = f(x0).

Remark 2.1. It is very tempting to believe that if a function is continuous in ev-
ery coordinate then the function is continuous. However, this is NOT TRUE! As a
counterexample, consider the function

f(x, y) =


xy
x2+y2 if (x, y) ̸= (0, 0)
0 if (x, y) = (0, 0)

.

Let f1, f2 : R → R denote the two functions obtained by restricting f(x, y) to the first
and second coordinate at the point (0, 0), that is, f1(x) = f(x, 0) and f2(y) = f(0, y).
Then f1(x) and f2(y) both are continuous at x = 0 and y = 0 respectively. Nonetheless,
we have already seen in Example 2.9 that the limit of f(x, y) as (x, y) approaches (0, 0)
does not exist, which means that the function f(x, y) (as a function in two variables)
is not continuous at the point (0, 0).
Properties of continuity. Let f and g be two functions from E ⊆ Rn to R that are
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continuous at a point x0 ∈ Rn. Then:
1. Linear combinations: For any α, β ∈ R, the function αf + βg is continuous at

x0;
2. Products: The product function fg is continuous at x0;
3. Quotients: If g(x0) ̸= 0 and g(x) ̸= 0 for all x ∈ E then the quotient f

g
is

continuous at x0;
4. Compositions: Let A be a subset of Rn and let

g1, . . . , gp : A → R

be functions continuous at the point a = (a1, . . . , an). On the other hand, let B be
a subset of Rp containing

{(g1(y), . . . , gp(y)) : y ∈ A}

and f : B → R a function continuous at the point b = (g1(a), . . . , gp(a)). Then the
function F : A → R defined by

F (y1, . . . , yn) = f(g1(y1, . . . , yn), . . . , gp(y1, . . . , yn))

is continuous at the point a = (a1, . . . , an).
Example 2.16. Let us demonstrate the usefulness of the properties of continuity by
showing that the function F : R2 → R given by F (x, y) = − sin(x)y is continuous at
the point (0, 0). To do this, consider the three auxiliary functions f : R2 → R and
g1, g2 : R → R defined respectively by

f(x, y) = xy, g1(x, y) = − sin(x), and g2(x, y) = y.

Since both g1(x, y) and g2(x, y) are continuous at (0, 0) and f(x, y) is continuous
at (g1(0, 0), g2(0, 0)) = (0, 0), we can conclude that F (x, y) = f(g1(x, y), g2(x, y)) is
continuous at the point (0, 0) (See Fig. 2.8).

Figure 2.8: Graph of the function F (x, y) = − sin(x)y.
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2.6 Continuity in a Region

Definition 2.8 (Continuous function in a Region). Let E be a non-empty subset of
Rn. A function f : E → R is continuous on E if for every x0 ∈ E and every real
number ε > 0 there exists a real number δ > 0 such that for all x ∈ E,

d(x,x0) ⩽ δ =⇒ |f(x) − f(x0)|⩽ ε.

Definition 2.9 (Equivalent definition). Let E be a non-empty subset of Rn. A func-
tion f : E → R is continuous on E if for every sequence (ak)k∈N of elements of E we
have

lim
k→+∞

ak = x0 =⇒ lim
k→+∞

f(ak) = f(x0).

Remark 2.2. If E is an open set then f : E → R is continuous on E if and only if it
is continuous at every point in E.

Example 2.17. Let us demonstrate that the function f : R2 → R defined by

f(x, y) =


sin(xy)
x

if x ̸= 0
y if x = 0

is continuous on R2 (see Fig. 2.9). Define the function h : R → R by

h(s) =


sin(s)
s

if s ̸= 0
1 if s = 0

It is continuous for all s ̸= 0 and, as lims→0 h(s) = 1 = h(0), it is also continuous at 0.
This is useful because we have f(x, y) = h(xy)y for all (x, y) ∈ R2. Since the functions

a(x, y) = xy and b(x, y) = y

are continuous at every point in R2 and f(x, y) = h(xy)y = a(h(a(x, y)), b(x, y)) for all
(x, y) ∈ R2, it follows from the properties of continuity that f is continuous at every
point in R2.
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Figure 2.9: Graph of f(x, y) = sin(xy)
x

for x ̸= 0.

2.7 Extreme Value Theorem and Intermediate Value
Theorem

Definition 2.10 (Maximum and minimum). Let E ⊆ Rn be non-empty and f a
function from E to R. A real number M satisfying

• f(x) ⩽M for every element x in E, and
• M ∈ Im(f),

is called the maximum of the function f on E and is denoted by maxx∈E f(x). If
x0 ∈ E is such that f(x0) = M then we say that the function f reaches its maximum
at the point x0. Similarly, a real number m satisfying

• f(x) ⩾ m for every element x in E, and
• m ∈ Im(f),

is called the minimum of the function f on E and is denoted by minx∈E f(x). If
x0 ∈ E is such that f(x0) = M then we say that the function f reaches its minimum
at the point x0.

Proposition 2.3 (Extreme value theorem). Let E be a compact subset of Rn and
f : E → R a continuous function. Then f has a minimum minx∈E f(x) and a maximum
maxx∈E f(x) on E.





Chapter 3

Partial derivatives and
differentiability

3.1 Partial Derivatives
Recall that given a differentiable function in a single variable f : R → R, the derivative
of f at the point a ∈ R is defined as

f ′(a) = df

dx
(a) = lim

t→0

f(a+ t) − f(a)
t

= lim
x→a

f(x) − f(a)
x− a

.

We are already familiar with several different ways of thinking about the derivative of
a function:

• The derivative of a function f quantifies the rate of change of the function’s
output value with respect to its input value. For example, if the derivative
of f at a point a is a ‘large’ positive number then a positive change close to
a will result in a ‘proportionately large’ positive change in the output value.
Conversely, if the derivative of f at a point a is a ‘small’ negative number then a
positive change close to a will result in a ‘proportionately small’ negative change
in the output value.

• The derivative f ′(a) of a function f at a point a equals the slope of the tangent
line to the graph of the function at that point. Moreover, the tangent line is the
best linear approximation of the function near that input value.

The goal of this chapter is to extend derivatives to functions in several variables.
While functions in one variable have only one derivative, functions in several variables
have multiple derivatives, one for each variable. These are called the partial derivatives.

Let

e1 =



1
0
0
...
0

 , e2 =



0
1
0
...
0

 , . . . , en =



0
0
...
0
1


39



40 CHAPTER 3. PARTIAL DERIVATIVES AND DIFFERENTIABILITY

denote the vectors of the canonical basis of Rn. Note that for any element x =
(x1, . . . , xn) ∈ Rn we have x = ∑n

k=1 xkek, where xk = ⟨x, ek⟩, for k = 1, . . . , n.

Definition 3.1 (Partial derivatives). Suppose E ⊆ Rn is a set and a = (a1, . . . , an)
is an interior point of E. Let f : E → R be a real-valued function in the variables
(x1, . . . , xn). The partial derivative of f at the point a with respect to the variable xk

(the k-th variable) is defined as

∂f

∂xk

(a) = lim
t→0

f (a + tek) − f(a)
t

whenever this limit exists. If this limit does not exist then we say that the partial
derivative of f at a with respect to xk does not exist.

Intuitively, the partial derivative ∂f
∂xk

is the derivative of f(x1, . . . , xn) with respect
to the variable xk while all the other variables remain constant. We also use the
notation

Dkf(a) = ∂f

∂xk

(a);

or if the real variables of f are explicitly given, say f(x, y, z), then we write

Dxf(x, y, z) = ∂f

∂x
(x, y, z)

Dyf(x, y, z) = ∂f

∂y
(x, y, z)

Dzf(x, y, z) = ∂f

∂z
(x, y, z).

Remark 3.1. The partial derivative ∂f
∂xk

(a) exists if and only if the function gk(t) =
f (a + tek) is differentiable at t = 0, because

∂f

∂xk

(a) = lim
t→0

f (a + tek) − f(a)
t

= lim
t→0

gk(t) − gk(0)
t

= g′
k(0). (3.1)

This means that ∂f
∂xk

(a) corresponds to the slope of the tangent line pointing in the
direction of the canonical vector ek. In the case of two variables, Fig. 3.1 below provides
an illustration of the partial derivatives as the slope of tangent lines in the x-direction
and in the y-direction.
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(x0, y0, f(x0, y0))

x

y

z

tangent line in x direction

with slope ∂f
∂x

(x0, y0)

(x0, y0, 0)

(x0, y0, f(x0, y0))

x

y

z

tangent line in y direction

with slope ∂f
∂y

(x0, y0)

(x0, y0, 0)

Figure 3.1: The gray surface is the graph of the function f(x, y) and contains the point
(x0, y0, f(x0, y0)). In the left figure, the plane y = y0 (pink plane) intersects the graph
of f(x, y) in a curve. The tangent line to this curve at the point (x0, y0, f(x0, y0)) (pink
line) has slope equal to the partial derivative of f(x, y) with respect to the variable x
at the point (x0, y0). The right figure depicts the tangent line (green line) to the curve
that is the intersection of the graph of f(x, y) with the plane x = x0 (green plane) at
the point (x0, y0, f(x0, y0)), whose slope is the partial derivative of f(x, y) with respect
to the variable y at the point (x0, y0).

Example 3.1. Consider a pot filled with water being heated on top of a stove
(see Fig. 3.2). Let us think of the pot as a cylinder in R3 given by

D = {(x, y, z) ∈ R3 : x2 + y2 < 1, 0 < z < 1}.

Suppose at time t the temperature of the water at the position (x, y, z) is given by the
equation

T (x, y, z, t) =
(

100 − 80
1 + t

)
·
(

1 − z

2

)
· e−x2−y2

.

Then T is a function in 4 variables (3 space variables and 1 time variable) with domain
dom(T ) = D × [0,∞). We can calculate its partial derivatives as

DxT (x, y, z, t) = ∂T

∂x
(x, y, z, t) =

(
100 − 80

1 + t

)
·
(

1 − z

2

)
· (−2x) · e−x2−y2

,

DyT (x, y, z, t) = ∂T

∂y
(x, y, z, t) =

(
100 − 80

1 + t

)
·
(

1 − z

2

)
· (−2y) · e−x2−y2

,

DzT (x, y, z, t) = ∂T

∂z
(x, y, z, t) =

(
100 − 80

1 + t

)
·
(

− 1
2

)
· e−x2−y2

,

DtT (x, y, z, t) = ∂T

∂t
(x, y, z, t) = 80

(1 + t)2 ·
(

1 − z

2

)
· e−x2−y2

.
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What do these partial derivatives mean? For example, Tt(x, y, z, t) describes the rate
of change in temperature at a stationary point (x, y, z) as time t changes. Since Tt is
always positive, we see that in every point (x, y, z) the temperature is increasing as
the time t increases. Conversely, due to the sign of Tx, Ty, Tz, we see that for a fixed
time t, the temperature is decreasing as we move away from the origin and towards
the boundary of the cylinder, which makes sense because the water at the edge of the
pot should be cooler than the water in the middle.

Figure 3.2: A pot of water with heat being applied from the bottom.

Definition 3.2 (Gradient vector). Let E ⊆ Rn be an open set, let f : E → R be a
function and suppose all partial derivatives ∂f

∂x1
(a), . . . , ∂f

∂xn
(a) of f at the point a ∈ E

exist. Then

∇f(a) = grad f(a) :=
(
∂f

∂xn

(a), . . . , ∂f
∂xn

(a)
)

∈ R1×n,

is called the gradient of f at a. If at least one of the partial derivatives ∂f
∂x1

(a), . . . , ∂f
∂xn

(a)
of f at the point a does not exist then we say that the gradient of f at a does not
exist.
Remark 3.2. The gradient ∇f(a) can also be written as a linear combination using
the canonical vectors e1, . . . , en,

∇f(a) =
n∑

k=1
Dkf(a)e⊤

k .

Therefore Dkf(a) = ∂f
∂xk

(a) = ⟨∇f(a), ek⟩ for all k = 1, 2, . . . , n.

3.2 Directional Derivatives
Definition 3.3 (Directional derivatives). Let E ⊆ Rn be an open set, f : E → R a
real-valued function, and v ∈ Rn\{0}. The directional derivative of f along the vector
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v at the point a ∈ E is defined as

∇vf(a) = lim
t→0

f (a + tv) − f(a)
t

wherever this limit exists. If this limit does not exist then we say that the directional
derivative of f along v at the point a does not exist. When v is a unit vector (which
means ∥v∥2 = 1), it is also called the derivative in the direction v.

Note that the partial derivative with respect to the variable xk coincides with the
directional derivative along the vector ek, that is,

∂f

∂xk

(a) = ∇ek
f(a).

Many of the familiar properties of the ordinary derivative hold for the directional
derivative. In particular, if ∇vf(a) and ∇vg(a) exist then

1. Linearity: For all α, β ∈ R we have

∇v(αf + βg)(a) = α(∇vf(a)) + β(∇vg(a)).

2. Product rule (or Leibniz’s rule):

∇v(f · g)(a) = g(a) · ∇vf(a) + f(a) · ∇vg(a).

3. Quotient rule: If g(a) ̸= 0 then

∇v

(
f

g

)
(a) = g(a) · ∇vf(a) − f(a) · ∇vg(a)

g(a)2 .

3.3 Differentiability at a Point
Recall from linear algebra that a linear map from Rn to R is a function L : Rn → R
that satisfies linearity, meaning it preserves addition and scalar multiplication: for all
x,y ∈ Rn and all α, β ∈ R, we have

L(αx + βy) = αL(x) + βL(y).

Note that any linear map L can always be represented as L(x) = ⟨w,x⟩, where w ∈ Rn

is a fixed vector and ⟨., .⟩ denotes the standard inner product on Rn defined in (1.1).

Definition 3.4 (Differentiability at a point). Let E be a non-empty open subset of
Rn. A function f : E → R is differentiable at the point a ∈ E if there exists a linear
map La : Rn → R such that

lim
h→0

∣∣∣f (a + h) − f(a) − La(h)
∣∣∣

∥h∥2
= 0.

In this case, the linear map La : Rn → R is called the differential of f at the point a.

Theorem 3.1 (Fundamental theorem). Suppose f : E → R is a function defined on
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a set E ⊆ Rn, and a is an interior point of E. If f is differentiable at a then the
following statements hold:

(i) f is continuous at a.
(ii) All partial derivatives of f at the point a exist, the gradient vector ∇f(a) of f

at the point a exists, and the differential La : Rn → R of f at the point a is the
same as scalar multiplication by the gradient vector, i.e.,

La(v) = ∇f(a) · v, ∀v ∈ Rn.

(iii) All directional derivatives of f at the point a exist and are given by

∇vf(a) = La(v) = ∇f(a) · v, ∀v ∈ Rn.

(iv) For all x ∈ E we have

f(x) = f(a) + ∇f(a) · (x − a) + r1(x),

where r1 is an “error” term satisfying

lim
x→a

r1(x)
∥x − a∥2

= 0.

The function

t(x) = f(a) + ∇f(a) · (x − a)

is called the linearization (or linear approximation) of f at the point a.
(v) The function f(x) = f(x1, . . . , xn) increases most rapidly in the direction ∇f ,

and decreases most rapidly in the direction −∇f . Any vector v ∈ Rn\{0}
orthogonal to ∇f is a direction of zero change.

Figure 3.3: The gradient vector ∇f gives the direction of steepest incline, while the
rate of change in the direction of the contour lines equals 0.

Remark 3.3. The gradient is perpendicular to the level sets of a function.
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Theorem 3.2 (Sufficient conditions for differentiability). Let E ⊆ Rn, f : E → R,
and suppose a is an interior point of E. If there exists δ > 0 such that every partial
derivative ∂f

∂xk
of f exists at every point in the open ball B(a, δ) and ∂f

∂xk
(x1, . . . , xk) is

a continuous function at the point a, then f is differentiable at the point a.

Example 3.2. Consider n = 2, E = R2, f : R2 → R, f(x, y) = x2 − y2. We have:
∂f

∂x
(x, y) = 2x,

∂f

∂y
(x, y) = −2y,

∇f(x, y) = (2x,−2y).

Example 3.3. Let E = {(x, y) ∈ R2 : x > 0} and f(x, y) = ey log x. Then

∂f

∂x
(x, y) = yey log x

x
,

∂f

∂y
(x, y) = ey log x · log x,

∇f(x, y) =
(
yey log x

x
, ey log x · log x

)
.

3.4 Tangent (Hyper)Planes

Recall that a straight line is called a tangent line to the curve y = f(x) at a point
x = a if the line passes through the point (a, f(a)) on the curve and has slope f ′(a),
where f ′(x) is the 1st derivative of f . The equation of the tangent line is then given
by

y = f(a) + f ′(a)(x− a).

The equation of the tangent line is closely related to Taylor’s theorem, which says that
the 1st-order Taylor expansion of f is given by

f(x) =

linear approximation︷ ︸︸ ︷
f(a) + f ′(a)(x− a) +

remainder︷ ︸︸ ︷
r1(x)︸ ︷︷ ︸

1st-order expansion

where r1(x) is an “error” term that satisfies limx→a
r1(x)
|x−a| = 0.

A similar concept applies to multivariate functions in n-dimensional Euclidean
space. As we have seen (cf. part (iv) of Theorem 3.1) if f(x1, . . . , xn) is a function in
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n variables that is differentiable at a point a ∈ Rn then

f(x) = f(a) + La(x − a) + r1(x) =

linear approximation︷ ︸︸ ︷
f(a) + ∇f(a) · (x − a) +

remainder︷ ︸︸ ︷
r1(x)︸ ︷︷ ︸

1st-order expansion

(3.2)

where r1(x) is an “error” term satisfying limx→a
r1(x)

∥x−a∥2
= 0.

Definition 3.5 (Tangent hyperplane). Let E ⊆ Rn and f : E → R, and assume that
a is an interior point of E. Suppose f is differentiable at a, and consider the linear
approximation of f at a given by

t(x) = f(a) + ∇f(a) · (x − a).

The graph of t(x) is called the tangent hyperplane of f at a. That is, the tangent
hyperplane consists of all points (x1, . . . , xn, xn+1) ∈ Rn+1 satisfying the equation

xn+1 = t(x1, . . . , xn).

This equation is commonly referred to as the equation of the tangent hyperplane.

When n = 1, the tangent hyperplane is the same as the tangent line, and when
n = 2 the tangent hyperplane is usually just called the tangent plane (see Fig. 3.4).

Figure 3.4: Tangent plane to a function z = f(x, y) at P = (x0, y0, f(x0, y0)).

Example 3.4. Let us find the equation of the tangent plane to the elliptic paraboloid

z = 2x2 + y2 + 1

at the point (1,−1, 4). This elliptic paraboloid is the graph of the function f(x, y) =
2x2 + y2 + 1. The partial derivatives of f form the gradient given by

∇f(x, y) = (4x, 2y).
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We can now write down the linear approximation of f(x, y) at the point (1,−1) as

t(x, y) = f(1,−1) + ∇f(1,−1) ·
((

x
y

)
−
(

1
−1

))
=

= 4 + (4,−2) ·
(
x− 1
y + 1

)
= 4 + 4(x− 1) − 2(y + 1)
= 4x− 2y − 2.

Thus, the equation of the tangent plane to the elliptic paraboloid at the point (1,−1, 4)
is

z = 4x− 2y − 2.

3.5 Functions of Class C1

Definition 3.6 (Differentiability in a region). Let E ⊆ Rn be an open set and f : E →
R a function on E. If f is differentiable at every point a ∈ E then we say that f is
differentiable on E.

Definition 3.7 (Functions of Class C1). Let E ⊆ Rn be an open set. A function
f : E → R is said to be of class C1(E) if all its partial derivatives exist and are
continuous at each point x ∈ E.

The existence and continuity of the partial derivatives at every point in E implies
the differentiability of the function at every point in E (see Theorem 3.2). It follows
that any function of class C1(E) is differentiable on E.

Proposition 3.1. Let E ⊆ Rn be open and f : E → R a function of class C1(E).
Then f is differentiable on E.

Example 3.5. Consider the function f : R2 → R given by

f(x, y) =
{

xy
x2+y2 if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

We have already studied this function in Example 2.9 and Remark 2.1.
• For (x, y) ̸= (0, 0), we can calculate the partial derivatives as

∂f

∂x
(x, y) = y

x2 + y2 − 2x2y

(x2 + y2)2

∂f

∂y
(x, y) = x

x2 + y2 − 2xy2

(x2 + y2)2 .
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• At the point (0, 0) we can use the definition of partial derivatives and find

∂f

∂x
(0, 0) = lim

h→0

f(h, 0) − f(0, 0)
h

= lim
h→0

0
h

= 0

∂f

∂y
(0, 0) = lim

h→0

f(0, h) − f(0, 0)
h

= lim
h→0

0
h

= 0.

This shows that the partial derivatives ∂f
∂x

and ∂f
∂y

exist for every point in R2. Nonethe-
less, this function is not differentiable at the point (0, 0). Indeed, we have seen in
Example 2.9 that this function is not even continuous at the point (0, 0), so according
to part (i) of Theorem 3.1, it cannot be differentiable at that point. This example
illustrates that even if a function is differentiable in every coordinate, this does not
mean that it is differentiable. In conclusion, the function f is of class C1(R2\{(0, 0)}).

3.6 Second Order Partial Derivatives

The partial derivatives ∂f
∂x1
, . . . , ∂f

∂xn
are also referred to as “partial derivatives of order

1” or “first order partial derivatives”. Let us now define the second order partial
derivatives.

Definition 3.8 (Partial derivatives of second order). Let E ⊆ Rn be an open set and
1 ⩽ k ⩽ n. Assume f : E → R is a function whose partial derivative ∂f

∂xk
exists for

every point in E. For 1 ⩽ i ⩽ n, if the partial derivative of ∂f
∂xk

with respect to the
variable xi at the point a exists, then we obtain a second order partial derivative of f
with respect to xi and xk at a denoted by ∂2f

∂xi∂xk
(a). If this derivative exists for every

a ∈ E, it defines a function ∂2f
∂xi∂xk

: E → R.

If i = k, then it is also common to write ∂2f
∂x2

i
instead of ∂2f

∂xi∂xi
. If i ̸= k, then there

are generally two mixed second-order partial derivatives:

∂2f

∂xi∂xk

and ∂2f

∂xk∂xi

.

These derivatives are not necessarily equal since the order of differentiation can affect
the result. However, as the following theorem states, they are equal if an additional
continuity assumption is satisfied.

Theorem 3.3 (Schwarz’s theorem). Let E ⊆ Rn be open and let f : E → R be a
function defined on E. For any point a ∈ E and indices i, k ∈ {1, . . . , n}, suppose the
mixed partial derivatives ∂2f

∂xi∂xk
and ∂2f

∂xk∂xi
exist in E and are continuous at a. Then,

∂2f
∂xi∂xk

(a) = ∂2f
∂xk∂xi

(a).
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Definition 3.9. The n× n matrix

Hess(f)(a) =


∂2f

∂x1∂x1
(a) . . . ∂2f

∂xn∂x1
(a)

...
. . .

...
∂2f

∂x1∂xn
(a) . . . ∂2f

∂xn∂xn
(a)


is called the Hessian matrix of f at the point a, written Hess(f)(a).

If all the partial derivatives of order 2 exist and are continuous at a then by
Schwarz’s theorem the Hessian matrix is a symmetric matrix, i.e., Hess(f)(a) =
Hess(f)(a)T . In this case we can use the Hessian matrix to form the second order
expansion of a differentiable function, given by

f(x) =

quadratic approximation︷ ︸︸ ︷
linear approximation︷ ︸︸ ︷

f(a) + ∇f(a) · (x − a) + 1
2(x − a)T · Hess(f)(a) · (x − a) +

remainder︷ ︸︸ ︷
r2(x)︸ ︷︷ ︸

2nd-order expansion

(3.3)
where r2(x) is an “error” term satisfying limx→a

r2(x)
∥x−a∥2

2
= 0.

The quadratic approximation is a polynomial of degree 2 in n variables called the
Taylor polynomial of order 2 at the point a and it is usually denoted by P2(x, y).

Example 3.6. Let us find the Taylor polynomial of order 2 for the function f(x, y) =
sin(2x+ y) + 3 cos(x+ y) at the point (0, 0). Recall the formula for computing the
quadratic approximation of a function in two variables at the point (0, 0) is

P2(x, y) = f(0, 0) + ∇f(0, 0) ·
(
x
y

)
+ 1

2(x, y) · Hess (f)(0, 0) ·
(
x
y

)
.

To use this formula, we have to find the gradient vector and the Hessian matrix
first. We have

∇f(x, y) = (2 cos(2x+ y) − 3 sin(x+ y), cos(2x+ y) − 3 sin(x+ y))

which gives

∇f(0, 0) = (2, 1).

Moreover,

Hess(f)(x, y) =
(

−4 sin(2x+ y) − 3 cos(x+ y) −2 sin(2x+ y) − 3 cos(x+ y)
−2 sin(2x+ y) − 3 cos(x+ y) − sin(2x+ y) − 3 cos(x+ y)

)

and hence

Hess(f)(0, 0) =
(

−3 −3
−3 −3

)
.
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It follows that

P2(x, y) = 3 + (2, 1) ·
(
x
y

)
+ 1

2(x, y) ·
(

−3 −3
−3 −3

)
·
(
x
y

)

= 3 + 2x+ y − 3
2x

2 − 3xy − 3
2y

2.

This is a degree 2 polynomial in 2 variables.

3.7 Higher Order Partial Derivatives

Definition 3.10 (Partial derivatives of higher orders). Consider a function f : E → R
defined on an open set E ⊆ Rn. For a sequence of indices i1, . . . , ip with each ij ∈
{1, . . . , n} and for p ⩾ 3, assume that the (p − 1)-th order partial derivative of f ,
denoted as ∂p−1f

∂xi1 ...∂xip−1
, exists in E. Then, the p-th order partial derivative of f with

respect to these indices, if it exists, is given by:

∂pf

∂xip . . . ∂xi1

= ∂

∂xip

(
∂p−1f

∂xi1 . . . ∂xip−1

)
.

This derivative is denoted as ∂f
∂xip ...∂xi1

(a) for any point a ∈ E. If such a derivative
exists for every a ∈ E, it defines a function ∂pf

∂xip ...∂xi1
: E → R.

Example 3.7. Consider a function f : R2 −→ R defined by f(x, y) = x3y2. We
calculate its higher-order partial derivatives as follows:

∂f

∂x
(x, y) = 3x2y2,

∂2f

∂x2 (x, y) = ∂

∂x
(3x2y2) = 6xy2,

∂2f

∂y∂x
(x, y) = ∂

∂y
(3x2y2) = 6x2y,

∂3f

∂y∂x2 (x, y) = ∂

∂y
(6xy2) = 12xy,

∂3f

∂x3 (x, y) = ∂

∂x
(6xy2) = 6y2.

This illustrates the computation of first, second, and third-order partial derivatives for
a function of two variables.

Remark 3.4. Explicit computations also give ∂2f
∂x∂y

(x, y) = 6x2y = ∂2f
∂y∂x

(x, y) and
∂3f

∂x∂y∂x
(x, y) = 12xy = ∂3f

∂y∂x2 (x, y), demonstrating the symmetry in mixed partial
derivatives.
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3.8 Functions of class Cp

Definition 3.11 (Functions of class Cp). Let E be an open subset of Rn and p a
positive integer. A function f : E → R is said to be of class Cp(E) if all its partial
derivatives of order p exist and are continuous at every point in E.
A function f : E → R is said to be of class C∞(E) if, for every integer p > 0, it is of
class Cp(E).

Proposition 3.2. If f : E → R is a function of class Cp(E), then it is also of class
Ck(E) for all 0 < k ⩽ p.

Example 3.8. Consider the function f : R2 → R defined by f(x, y) = x sin(xy).
Then, for every (x, y) ∈ R2, we have:

∂f

∂x
(x, y) = sin(xy) + xy cos(xy),

∂f

∂y
(x, y) = x2 cos(xy),

∂2f

∂x2 (x, y) = 2y cos(xy) − xy2 sin(xy),

∂2f

∂x∂y
(x, y) = ∂2f

∂y∂x
(x, y) = 2x cos(xy) − x2y sin(xy),

∂2f

∂y2 (x, y) = −x3 sin(xy).

Figure 3.5: f(x, y) = x sin(xy)

The following is a corollary of Schwarz’s theorem.

Corollary 3.1. Let f : E → R be a function of class Cp(E) and let k be an integer
between 1 and p. If two ordered k-tuples (i1, · · · , ik) and (j1, · · · , jk) are equal up to
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a permutation, then, for any element a = (a1, . . . , an) of E, we have

∂kf

∂xi1 · · · ∂xik

(a1, · · · , an) = ∂kf

∂xj1 · · · ∂xjk

(a1, · · · , an).

3.9 Taylor’s Theorem for Multivariable Functions
The following is a special (but often very useful) case of Taylor’s theorem for multi-
variate functions.

Theorem 3.4 (Taylor’s Formula – special case). Let E ⊆ Rn be open and f : E → R
a function of class Cp+1(E). Then for every a ∈ E there exists a real number δ > 0
such that B(a, 2δ) ⊆ E and, for every element x ∈ B(a, δ), one can associate a number
0 < θ < 1 so that the following equality (known as Taylor’s formula) holds:

f(x) = F (0) + F ′(0) + . . .+ F (p)(0) 1
p! + F (p+1)(θ) 1

(p+ 1)! ,

where F : (−2, 2) → R is the function defined by F (t) = f(a + t(x − a)).

To state Taylor’s theorem for multivariate functions in full generality, we first
need to introduce the multi-index notation. Given an n-tuple of non-negative integers
α = (α1, . . . , αn) and a point x ∈ Rn, let

|α| = α1 + . . .+ αn, α! = α1! · · ·αn!, xα = xα1
1 · · ·xαn

n .

(Recall that by convention 0! = 1.) For example, if n = 3 and α = (1, 0, 4) then
we have |α| = 1 + 0 + 4 = 5, and α! = 1! · 0! · 4! = 24, and (x1, x2, x3)α = x1x

4
3.

Given a function f : E → R of class Ck(E) and an n-tuple of non-negative integers
α = (α1, . . . , αn) with |α| ⩽ k then we write

Dαf = ∂|α|f

∂xα1
1 · · · ∂xαn

n

.

Since f is of class Ck(E), all its k-th order partial derivatives exist and are continuous
and, by Schwarz’s theorem, one can change the order of mixed derivatives. This ensures
that as long as |α| ⩽ k the above notation is well-defined and unambiguous.

Theorem 3.5 (Multivariate version of Taylor’s theorem). Let k ∈ N. Suppose E ⊆
Rn is open and f : E → R is a function of class Ck(E). Then

f(x) =

kth-order approximation︷ ︸︸ ︷∑
|α|⩽k

Dαf(a)
α! (x − a)α +

remainder︷ ︸︸ ︷
rk(x)

︸ ︷︷ ︸
kth-order expansion

(3.4)

where the sum is taken over all n-tuples of non-negative integers α = (α1, . . . , αn)
with |α| ⩽ k and rk(x) is an “error” term satisfying limx→a

rk(x)
∥x−a∥k

2
= 0.
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Note that if k = 1 then formula (3.4) is the same as (3.2) and if k = 2 then formula
(3.4) is the same as (3.3).

3.10 Local Extreme Values
One of the main uses of ordinary derivatives is in finding maximum and minimum
values (extreme values). In this section we see how to use partial derivatives to locate
maxima and minima of functions in more than one variables. This theory finds many
applications, for example it can be used to maximize the volume of a box without a
lid if we have a fixed amount of cardboard to work with.

Figure 3.6

Look at the hills and valleys in the graph of f shown in Fig. 3.6. There are two
points where f has a local maximum, that is, where f is larger than at nearby values,
and two local minima, where f is smaller than at nearby values. We observe that
at all these extreme values, the tangent plane to the graph is horizontal, or in other
words, all the partial derivatives vanish at these points. This motivates the following
definition.
Definition 3.12 (Stationary Point). We say that a = (a1, . . . , an) ∈ E is a stationary
point of the function f : E → R if all its partial derivatives are well-defined and vanish
at a, that is,

∂f

∂x1
(a1, . . . , an) = . . . = ∂f

∂xn

(a1, . . . , an) = 0.

Definition 3.13 (Local Maximum and Minimum of a Function). We say that the
function f : E → R admits a local maximum (resp. local minimum) at the point a ∈ E
if there exists a real number δ > 0 such that for all x ∈ E we have x ∈ B(a, δ) implies
f(x) ⩽ f(a) (resp. f(x) ⩾ f(a)). Furthermore, we will say that a function admits a
local extreme value at the point a if this function admits either a local maximum or a
local minimum at that point.

The notion of a local maximum or minimum is not to be confused with the notion
of (global) maximum or minimum given in Definition 2.10.
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Theorem 3.6 (Necessary Condition for local extreme values). Let f : E → R be a
function and assume all partial derivatives of f at point a exist. If f has a local
extreme value at the point a, then a must be a stationary point.

Figure 3.7: A so-called monkey saddle surface, with the equation z = x3 − 3xy2.
Its name derives from the observation that a saddle for a monkey would require two
depressions for the legs and one additional depression for the tail.

The geometric interpretation of Theorem 3.6 is that if the graph of f has a tangent
plane and a local extreme value at a point a, then this tangent plane must be horizontal.
Remark 3.5. The condition demonstrated in Theorem 3.6 is only a necessary one,
but not sufficient, because stationary points are not always local extreme values. For
example, let f : R2 → R be the function defined by f(x, y) = x3 − 3xy2. Since

∂f

∂x
(0, 0) = ∂f

∂y
(0, 0) = 0,

ti follows that (0, 0) is a stationary point of f . However, f does not have a local
extreme value at (0, 0), which is evident from the graph of f depicted in Fig. 3.7.
Indeed, we see that this surface has a horizontal tangent plane at the origin, yet it
does not have a local extreme value at that point.

Proposition 3.3. Given a function f : E → R, if f possesses a local extrema at the
point a = (a1, . . . , an), then, in light of the necessary conditions outlined in Theo-
rem 3.6, the point a must fall into one of the following categories:

• Stationary points of f , where the gradient of f exists and vanishes;
• Points within the domain E at which at least one of the partial derivatives of f

does not exist.
This categorization is crucial for identifying the points at which the function f may
achieve its maximum or minimum values, highlighted by either a zero gradient (indi-
cating a lack of change in all directions) or the absence of a derivative (indicative of a
potential sharp point or discontinuity).
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Example 3.9. Consider four points in R2: A = (7, 1), B = (x,−x), C = (y, y), and
D = (8, 4). How should we choose x and y so that the sum of the distances from A to
B, from B to C, and from C to D is minimal? This problem is equivalent to finding
a point in R2 for which the function f : R2 → R defined by

f(x, y) =
√

(x− 7)2 +(−x− 1)2 +
√

(x− y)2 +(−x− y)2 +
√

(y − 8)2 +(y − 4)2

=
√

2
(√

x2 −6x+ 25 +
√
x2 +y2 +

√
y2 −12y+40

)
reaches its minimum. First, we need to demonstrate that such a point exists. For this,
let E = {(x, y) ∈ R2 : x2 + y2 ⩽ 103}. Since f is continuous on E and E is a compact
subset of R2, it follows from the Extreme Value Theorem (see Proposition 2.3) that
there exists an element (a, b) in E such that

f(a, b) = min
(x,y)∈E

f(x, y).

Consequently, noting that for every (x, y) /∈ E:

f(x, y) ⩾
√

2
√
x2 + y2 >

√
2
√

1000 >
√

2(5 +
√

40) = f(0, 0) ⩾ f(a, b)

we can conclude that

f(a, b) = min
(x,y)∈R2

f(x, y).

So there exists a global minimum for the function f . Notice that
∂f

∂x
(x, y) =

√
2
((
x2 − 6x+ 25

)−1/2
(x− 3) +

(
x2 + y2

)−1/2
x
)

∂f

∂y
(x, y) =

√
2
((
x2 + y2

)−1/2
y +

(
y2 − 12y + 40

)−1/2
(y − 6)

)
for (x, y) ̸= (0, 0). Since the only stationary point of f is (1, 2), we can assert that
(a, b) = (1, 2) or (a, b) = (0, 0) (see Proposition 3.3). However,

f(1, 2) = 5
√

10 <
√

2(5 +
√

40) = f(0, 0)

thus, we can affirm that (a, b) = (1, 2). Consequently, the two sought points are

B = (1,−1) and C = (2, 2).

Fig. 3.8 below provides the geometric solution to this problem.

3.11 Global Extreme Values

The Extreme Value Theorem (Proposition 2.3) says that any continuous function on
a compact set attains a maximum and minimum. To find these extreme values (which
are sometimes also called absolute extreme values or global extreme values), we can
employ the following extension of the Closed Interval Method.
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x
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D′
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b
1
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8a

Figure 3.8: The aim is to find a point C on the blue line and B on the purple line
such that the distance AB +BC + CD is minimal.

Finding Global Extreme Values. Let f : E → R be a continuous function on
a compact set E and suppose f is differentiable on the interior E̊. To find the
absolute maximum and minimum values of f on E, complete the following three
steps:

1. Find the stationary points of f on the interior E̊.
2. Find the extreme values of f on the boundary ∂E.
3. Compile a list of the function values at the points found in steps 1 and 2. The

largest of these values is the (absolute/global) maximum value; the smallest
of these values is the (absolute/global) minimum value.

Example 3.10. Let us find the absolute maximum and minimum values of the func-
tion f(x, y) = x2 − 2xy + 2y on the rectangle D = {(x, y) : 0 ⩽ x ⩽ 3, 0 ⩽ y ⩽ 2} =
[0, 3] × [0, 2].

Since f is a polynomial, it is continuous on the compact rectangle D, so Proposi-
tion 2.3 tells us there is both an absolute maximum and an absolute minimum. First
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we find all the stationary points. These occur when
∂f

∂x
(x, y) = 2x− 2y = 0,

∂f

∂y
(x, y) = 2x− 2y = 0,

so the only stationary point in is (1, 1). This point is in D̊ and the value of f at this
point is f(1, 1) = 1.

In step 2 we look at the values of f on the boundary of D, which consists of the four
line segments L1 = [0, 3]×{0}, L2 = {3}×[0, 2], L3 = [0, 3]×{2}, and L4 = {0}×[0, 2].
On L1 we have y = 0 and

f(x, 0) = x2, 0 ⩽ x ⩽ 3.

This is an increasing function of x, so its minimum value is f(0, 0) = 0 and its maximum
value is f(3, 0) = 9. On L2 we have x = 3 and

f(3, y) = 9 − 4y, 0 ⩽ y ⩽ 2,

which is a decreasing function of y, so its minimum value is f(3, 2) = 1 and its
maximum value is f(3, 0) = 9. On L3 and L4 we can execute very similar strategies.
We find that when restricted to L3, f has a minimum at (2, 2), which is f(2, 2) = 0
and a maximum value at (0, 2), which is f(0, 2) = 4. The maximum of f on L4 is at
(0, 2), with f(0, 2) = 4, and the minimum is at (0, 0) with f(0, 0) = 0.

In step 3, we compare all the values that we have thus far found:
(x,y) f(x,y)
(1,1) 1
(0,0) 0
(3,0) 9
(3,2) 1
(2,2) 0
(0,2,) 4

We see that the maximum value of f on D is f(3, 0) = 9 and the minimum value is
f(0, 0) = f(2, 2) = 0.

3.12 Saddle Points
Recall that for functions of a single variable, a stationary point c where f ′(c) = 0 may
correspond to a local maximum, a local minimum, or neither. An analogous situation
occurs for multivariate functions. If a is a stationary point of a function f , where
∇f(a) = 0, then f(a) may be a local maximum, a local minimum, or neither. In the
last case, we are dealing with a so-called saddle point of f .
Definition 3.14. If a is a stationary point of a function f that is not a local extreme
value then a is called a saddle point of f .
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The name ‘saddle point’ derives from the fact that the prototypical example in
two dimensions is a surface that curves up in one direction, and curves down in a
different direction, resembling a riding saddle (for a rider of an animal such as a horse)
or landform saddle (a mountain pass between two peaks). In general, the graph of a
function at a saddle point need not resemble an actual saddle, but the graph crosses
the tangent plane at that point.

In summary, saddle points are points where the tangent plane is horizontal, but
there are points arbitrarily close to it where the function value lies above the tangent
plane, and at the same time points arbitrarily close where the function value is below
the tangent plane.

3.13 The Second Derivative Test – two-variable case
We need to be able to determine whether or not a function has an extreme value at
a critical point. The following test is analogous to the Second Derivative Test for
functions of one variable.

Theorem 3.7 (Second Derivative Test – 2 variable case). Let E ⊆ R2 be an open
set and f : E → R a function of class C2(E). Let D denote the determinant of the
Hessian matrix of f at the point (a, b) ∈ E, i.e.,

D = det(Hess(f)(a, b)) =
∣∣∣∣∣∣
 ∂2f

∂x2 (a, b) ∂2f
∂y∂x

(a, b)
∂2f

∂x∂y
(a, b) ∂2f

∂y2 (a, b)

∣∣∣∣∣∣
= ∂2f

∂x2 (a, b) · ∂2f
∂y2 (a, b) −

(
∂2f

∂x∂y
(a, b)

)2
.

If (a, b) is a stationary point then the following conditions determine the nature of the
extreme value at (a, b):

• If D > 0 and ∂2f
∂x2 (a, b) > 0, then f has a local minimum at (a, b).

• If D > 0 and ∂2f
∂x2 (a, b) < 0, then f has a local maximum at (a, b).

• If D < 0, then f has a saddle point at (a, b).
• If D = 0 then the test is inconclusive.

Remark 3.6.
• If D = 0 then the test gives no information: f could have a local maximum or

local minimum or a saddle point at (a, b). An example of such a function would
be f(x, y) = (y − x2)(y − 2x2) at the point (a, b) = (0, 0).

• If D > 0 then ∂2f
∂x2 (a, b) and ∂2f

∂y2 (a, b) are both non-zero and have the same
sign. This means we can replace the condition ∂2f

∂x2 (a, b) > 0 in the first part
of the test with either the condition ∂2f

∂y2 (a, b) > 0 or even with the condition
tr(Hess(f)(a, b)) > 0, the trace of the Hessian matrix. The same goes with the
condition ∂2f

∂x2 (a, b) > 0 in the second part of the test.
• Note that Theorem 3.7 only concerns functions in two variables. There is also

a version of the second derivative test for functions in three and more variables,



3.13. THE SECOND DERIVATIVE TEST – TWO-VARIABLE CASE 59

which we cover in the next section.

Example 3.11. The two functions g, h : R2 → R defined respectively by g(x, y) =
x3 + x2 + y3 and h(x, y) = x4 + y4 (see Example 3.11) have (0, 0) as a stationary point
and satisfy (

∂2g

∂x∂y
(0, 0)

)2

− ∂2g

∂x2 (0, 0) · ∂
2g

∂y2 (0, 0) = 0,(
∂2h

∂x∂y
(0, 0)

)2

− ∂2h

∂x2 (0, 0) · ∂
2h

∂y2 (0, 0) = 0.

Since the function g does not have a local extreme value at the point (0, 0), while the
function h does, this example illustrates that for a C2 class function f : R2 → R in the
neighborhood of (a, b) which satisfies

∂f

∂x
(a, b) = ∂f

∂y
(a, b) = 0, and

(
∂2f

∂x∂y
(a, b)

)2

− ∂2f

∂x2 (a, b) · ∂
2f

∂y2 (a, b) = 0,

it is generally not possible a priori to determine whether it admits an extrema at the
point (a, b).

Example 3.12. Let f : R2 → R be the function defined by f(x, y) = y3+3y2−4xy+x2.
Since for all (x, y) ∈ R2:

∂f

∂x
(x, y) = −4y + 2x, ∂f

∂y
(x, y) = 3y2 + 6y − 4x,

and
∂2f

∂x2 (x, y) = 2, ∂2f

∂x∂y
(x, y) = −4, ∂2f

∂y2 (x, y) = 6(y + 1),

it follows that the stationary points of the function f are (0, 0) and (4/3, 2/3), and at
these points

∂2f

∂x2 (0, 0) · ∂
2f

∂y2 (0, 0) −
(
∂2f

∂x∂y
(0, 0)

)2

= −4 < 0,
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and

∂2f

∂x2 (4/3, 2/3) · ∂
2f

∂y2 (4/3, 2/3) −
(
∂2f

∂x∂y
(4/3, 2/3)

)2

= 4 > 0.

Therefore, according to Theorem 3.7, the function f has a local minimum at the point
(4/3, 2/3), while at the point (0, 0), it does not have a local extreme value because it
is a saddle point.

3.14 The Second Derivative Test – general case
Recall from linear algebra that every real symmetric n × n matrix is diagonalizable.
In particular, symmetric matrices possess n real eigenvalues (when counted with mul-
tiplicities) and admit a basis of eigenvectors. This also applies to the Hessian matrix
of a function: As we have learned, if f(x1, . . . , xn) is a function in n variables of class
C2 then its Hessian matrix

Hess(f) =


∂2f

∂x1∂x1
. . . ∂2f

∂xn∂x1
...

. . .
...

∂2f
∂x1∂xn

. . . ∂2f
∂xn∂xn


is a real symmetric matrix, which means it admits n real eigenvalues λ1, . . . , λn. These
eigenvalues determine the curvature behavior of the function f and play a crucial role
in the second derivative test for multivariate functions.

Theorem 3.8 (Second Derivative Test – general case). Let E ⊆ Rn be an open set
and f : E → R a function of class C2(E). Let a ∈ E and let λ1, . . . , λn denote the
eigenvalues of the matrix Hess(f)(a). If a is a stationary point then the following
conditions determine the nature of the extreme value at a:

• If the eigenvalues λ1, . . . , λn are all positive then f has a local minimum at a.
• If the eigenvalues λ1, . . . , λn are all negative then f has a local maximum at a.
• If the eigenvalues λ1, . . . , λn are all non-zero, but some are positive and some are

negative, then f has a saddle point at a.
• If at least one of the eigenvalues λ1, . . . , λn equals zero then the test is inconclu-

sive.

Example 3.13. Let f : R3 → R be a function of class C2(R) and let a be a stationary
point of f . If the three eigenvalues of the Hessian matrix Hess(f)(a) satisfy

λ1 + λ2 + λ3 = 2 and λ1λ2λ3 = −1

then can f have a local extreme value at the point a? The answer is no. Since
λ1λ2λ3 = −1, the Second Derivative Test is not inconclusive, so we must be either in
the first, second, or third case of the test. However, since λ1λ2λ3 is negative we cannot
be in the first case, and since λ1 + λ2 + λ3 is positive we cannot be in the second case.
By method of elimination, we must be in the third case of the test, so a is a saddle
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point of f .

3.15 Implicit Function Theorem

In mathematics, we say that variables are in an explicit relation when one variable is
expressed directly in terms of the other variable(s). For example, an explicit equation
of a variable xn in terms of the variables x1, . . . , xn−1 is a relation of the form

xn = f(x1, . . . , xn−1),

where f is a function of n − 1 variables. In this context, we refer to xn as the de-
pendent variable and x1, . . . , xn−1 as the independent variables and the function f is
the “law” that describes the relationship between xn and x1, . . . , xn−1. The great ad-
vantage of explicit relations is that if one knows the values of all the independent
variables x1, . . . , xn−1 then it is relatively easy to calculate the values of the dependent
variable xn.

In contrast to explicit relations, variables can also be in an implicit relation, which
means their relationship isn’t expressed explicitly in terms of one variable depending
on the others. More precisely, an implicit equation in the variables x1, . . . , xn is a
relation of the form

F (x1, . . . , xn) = c,

where F is a function of n variables and c ∈ R is a constant. For example, the unit
circle is commonly described by the implicit equation

x2 + y2 = 1.

Note that simple implicit equations can easily be transformed into explicit equa-
tions by isolating one variable on one side of the equation. For example, the implicit
equation x + y + z = 1 (which describes a plane in R3) can easily be tuned into the
explicit equation z = 1 − x − y using rudimentary algebraic manipulations. But if
the implicit equation is more complicated then it is often not possible to express one
variable in terms of the others by hand. In this case, we need a more sophisticated
tool, which is where the Implicit Function Theorem comes into play.

An implicit function is a function defined by an implicit equation that expresses
one of the variables, say xn, as a function of other variables, say x1, . . . , xn−1. Here’s
the simple example: The equation x2 + y2 = 1 of the unit circle defines y as an
implicit function of x if −1 < x < 1, and y is restricted to positive values. Under this
restrictions we have

x2 + y2 = 1︸ ︷︷ ︸
implicit equation

⇐⇒ y =
√

1 − x2︸ ︷︷ ︸
implicit function for y>0

,

where f(x) =
√

1 − x2 is the implicit function defined by the implicit equation x2+y2 =
1 in the domain {(x, y) : −1 < x < 1, y > 0}. Similarly, if y is restricted to negative
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values then we have

x2 + y2 = 1︸ ︷︷ ︸
implicit equation

⇐⇒ y = −
√

1 − x2︸ ︷︷ ︸
implicit function for y<0

,

where f(x) = −
√

1 − x2 is the implicit function defined by the implicit equation
x2 + y2 = 1 in the domain {(x, y) : −1 < x < 1, y < 0}. If y = 0, or equivalently if
x = 1 or x = −1, then it is impossible to express y in terms of x and so the implicit
function does not exist.

The Implicit Function Theorem tells under what conditions – and in what neigh-
borhood – an implicit function exists, which helps us deal with cases where we have
an implicit equation relating multiple variables and it’s not easy to solve explicitly for
one variable in terms of the others.

Theorem 3.9 (Implicit Function Theorem). Let n be an integer where n ⩾ 2. Let
E ⊆ Rn be an open set, and let F : E → R be a function of class C1(E). If a =
(a1, . . . , an) ∈ E and c ∈ R is such that

F (a) = c and ∂F

∂xn

(a) ̸= 0,

then there exist a neighborhood U ⊆ Rn−1 of the point (a1, . . . , an−1), a neighbor-
hood V ⊆ R of the point an, and a unique function f : U → V such that for all
(x1, . . . , xn−1) ∈ U and all xn ∈ V we have

F (x1, . . . , xn) = c ⇐⇒ xn = f(x1, . . . , xn).

The function f : U → V is called the implicit function for the equation F (x1, . . . , xn) =
c at the point (a1, . . . , an).

Remark 3.7. Note that the implicit function f : U → V satisfies

an = f(a1, . . . , an−1).

This follows from the assumption F (a1, . . . , an) = c.

Remark 3.8. If, in the statement of the Implicit Function Theorem Theorem 3.9, we
do not assume that ∂F

∂xn
(a) ̸= 0, then the result may no longer be true, even if the other

assumptions are satisfied. For example, this is the case for the function F : R2 → R
defined by F (x, y) = x2 + y2 for a = (0, 0).

Example 3.14. Let F : R2 → R be the function defined by F (x, y) = 1 − yex + xey.
Since F (0, 1) = 0 and ∂F

∂y
(0, 1) = −1, we know, thanks to the Implicit Function

Theorem, that there exists a real number δ > 0 and a continuously differentiable
function f : (−δ, δ) → R satisfying the following two properties (see Example 3.14):
f(0) = 1 and F (x, f(x)) = 0 for every x ∈ (−δ, δ). Since the derivative of the function
s → F (s, φ(s)) is zero, we can use the chain rule to conclude that

∂F

∂x
(0, 1) + ∂F

∂y
(0, 1)f ′(0) = 0
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and therefore

f ′(0) = −
∂F
∂x

(0, 1)
∂F
∂y

(0, 1)
= −1 + e.

3.16 Implicit Differentiation
The technique we used at the end of Example 3.14 to compute the derivative of a
function is called implicit differentiation.

Theorem 3.10 (Implicit differentiation). Let n be an integer, where n ⩾ 2, let E
be an open subset of Rn, and let F : E → R be a function of class C1(E). Sup-
pose a = (a1, . . . , an) and there exists exists a real number δ > 0 and a function
f : B((a1, . . . , an−1) , δ) → R of class C1(B((a1, . . . , an−1) , δ)) such that

F (x1, . . . , xn−1, f(x1, . . . , xn−1)) = 0

holds for all (x1, . . . , xn−1) ∈ B((a1, . . . , an−1) , δ). Then

∂f

∂xj

(a1, . . . , an−1) = −
∂F
∂xj

(a)
∂F
∂xn

(a)
, ∀j = 1, . . . , n− 1.

3.17 Tangent Line to Implicit Curves
An implicit curve is a plane curve defined by an implicit equation relating two variables,
commonly x and y. For example, the unit circle is defined by the implicit equation
x2 + y2 = 1. In general, every implicit curve is defined by an equation of the form

F (x, y) = c
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for some function F of two variables and some constant c. Hence an implicit curve can
always be considered as the level curve of a function in two variables (cf. Definition 2.2).
In this context, “implicit” means that the equation is not expressed explicitly in either
one of the variables of the function.

Figure 3.9: The implicit curve sin(x+ y) − cos(xy) + 1 = 0 plotted as a graph in 2
dimensions (left) and as a level curve of the surface z = sin(x+ y) − cos(xy) + 1 in 3
dimensions (right). This example also showcases the possibly complicated geometric
structure of an implicit curve.

Let D ⊆ R2 be an open set, F : D → R a function of class C1(D), c ∈ R, and
consider the implicit curve defined by the equation

F (x, y) = c, (x, y) ∈ D.

The implicit function theorem (Theorem 3.9) describes conditions under which the
above equation can be solved in terms of x and/or y. This theorem is key for the
computation of essential geometric features of implicit curves such as tangents, normal
vectors, and curvature. In particular, the Implicit Function Theorem says that if
(a, b) ∈ D such that

F (a, b) = c and ∂F

∂y
(a, b) ̸= 0,

then there exists a function f such that for all points (x, y) ∈ D with ∥(x, y) − (a, b)∥
sufficiently small, we have F (x, y) = c ⇐⇒ y = f(x). This leads to two crucial
insights:

• Equivalence between the level set and the graph of f : If the point (x, y)
is sufficiently close to (a, b) then it satisfies the equation F (x, y) = c if and only
if it lies on the graph of the function f . Formally, this relationship is expressed
as:

(x, y) ∈ Lc(F ) ⇐⇒ (x, y) ∈ G(f),
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where Lc(F ) = {(x, y) ∈ D : F (x, y) = c} denotes the level set of F at height c,
and G(f) = {(x, f(x)) : x ∈ dom(f)} represents the graph of the function f .

• Tangent line equation at a point on the graph of f : Recall from your
Analysis I course that the tangent to the graph of f at the point (a, b) is given
by the equation

y = f(a) + f ′(a) · (x− a).

By implicit differentiation (Theorem 3.10) we know that

f ′(a) = −
∂F
∂x

(a, b)
∂F
∂y

(a, b)
,

which allows us to rewrite the equation of the tangent line as

y = f(a) −
∂F
∂x

(a, b)
∂F
∂y

(a, b)
· (x− a).

Finally, using f(a) = b, we can express the tangent line of F at the point (a, b)
in terms of the gradient as

∇F (a, b) ·
(
x− a
y − b

)
= 0.

Equation of the tangent line to an implicit curve. Let D ⊆ R2 be an open
set, F : D → R a function of class C1(D), and c ∈ R a real number. Consider the
implicit curve defined by the equation F (x, y) = c. If (a, b) is a point on this curve
with ∇F (a, b) ̸= 0 then the equation of the tangent line to this implicit curve at
the point (a, b) is

∇F (a, b) ·
(
x− a
y − b

)
= 0.

Example 3.15. Given c > 0, let us find the tangent line to the circle x2 + y2 = c at
a point (a, b) on this circle.

Letting F (x, y) = x2 + y2, the level set Lc(F ) is a circle of radius
√
c. For a point

(a, b) such that a2 + b2 = c and b ̸= 0, the condition ∂F
∂y

(a, b) = 2b ̸= 0 holds. Thus,
near (a, b), the level set Lc(F ) corresponds to the graph of the function x 7→ f(x),
defined as f(x) =

√
c− x2. If a2 + b2 = c with b = 0, we can swap the roles of x and

y, as then
∂F

∂x
(a, b) = 2a ̸= 0.

In either one of the two cases, the gradient of F is ∇F (x, y) = (2x, 2y) and hence
∇F (a, b) = (2a, 2b). Therefore, the equation of the line through the point (a, b) and
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tangent to the circle x2 + y2 = c is

(2a, 2b) ·
(
x− a
y − b

)
= 0.

Using a2 + b2 = c, this can be simplified to

ax+ by = c.

3.18 Tangent Plane to Implicit Surfaces
An implicit surface is a surface in R3 defined by an equation of the form

F (x, y, z) = d,

where F is some function depending on three variables and d is some constant real
number. Implicit surfaces are the same as level surfaces of functions in three variables.

Figure 3.10: The surface that is depicted above is defined by the implicit equation
2y(y2 − 3x2)(1 − z2) + (x2 + y2)2 − (9z2 − 1)(1 − z2) = 0.

Let D ⊆ R3 be an open set, F : D → R be a function of class C1(D), and (a, b, c) ∈
D with d ∈ R such that

F (a, b, c) = d and ∂F

∂z
(a, b, c) ̸= 0.

The Implicit Function Theorem guarantees the existence of a differentiable function f
such that for all

c = f(a, b) and F (x, y, f(x, y)) = d for all (x, y) sufficiently close to (a, b).

• First consequence: For any (x, y, z) sufficiently close to (a, b, c), we have :

F (x, y, z) = d ⇐⇒ z = f(x, y).

In other words, locally around the point (a, b, c) the level set Ld(F ) and the
graph G(f) coincide.
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• Second consequence: As we have learned in Section 3.4, the equation of the
tangent plane to the graph of f at (a, b) is given by

z = f(a, b) + ∂f

∂x
(a, b)(x− a) + ∂f

∂y
(a, b)(y − b).

On the other hand, using implicit differentiation (Theorem 3.10) we have

∂f

∂x
(a, b) = −

∂F
∂x

(a, b, c)
∂F
∂z

(a, b, c)
and ∂f

∂y
(a, b) = −

∂F
∂y

(a, b, c)
∂F
∂z

(a, b, c)
.

So we can rewrite the equation of the tangent plane in terms of the gradient of
F as

∇F (a, b, c) ·

x− a
y − b
z − c

 = 0,

which is the equation of the tangent plane to the graph of f at the point (a, b, c).
Thus, ∇F (a, b, c) is orthogonal to the tangent plane of the graph of f at (a, b, c).

Equation of the tangent plane to an implicit surface. Let D ⊆ R3 be an
open set, F : D → R a function of class C1(D), and d ∈ R a real number. Consider
the implicit curve defined by the equation F (x, y, z) = d. If (a, b, c) is a point on
this curve with ∇F (a, b, c) ̸= 0 then the equation of the tangent plane to this
implicit surface at the point (a, b, c) is

∇F (a, b, c) ·

x− a
y − b
z − c

 = 0.

Example 3.16. Let F (x, y, z) = x2 +y2 + z2 and consider the level set F (x, y, z) = 1,
which describes a sphere of radius 1. For a point (x0, y0) such that x2

0 + y2
0 < 1, let

z0 = ±
√

1 − x2
0 − y2

0. We have F (x0, y0, z0) = 1 and ∂F
∂z

(x0, y0, z0) = 2z0 ̸= 0. The
equation of the tangent plane at the point (x0, y0, z0) is given by:

∇F (x0, y0, z0) ·

x− x0
y − y0
z − z0

 = 0 ⇐⇒

2x0
2y0
2z0

 ·

x− x0
y − y0
z − z0

 = 0.

Simplifying the expression and using x2
0 + y2

0 + z2
0 = 1 we get the euqation of the

tangent plane as

x0x+ y0y + z0z = 1.
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3.19 Method of Lagrange Multipliers – single con-
straint

Constrained optimization is the process of optimizing a function with respect to some
variables in the presence of constraints on those variables. The Method of Lagrange
Multipliers is a powerful technique for constrained optimization. It lets you find the
maximum or minimum of a multivariable function subject to an implicit constraint
equation. While it was originally developed to solve physics equations, today it finds
applications in all sciences, especially in machine learning. To motivate the subject
matter, let us first look at a simple constrained optimization problem that you are
probably familiar with from your high school mathematics education.
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Example 3.17. For a rectangle whose perimeter is 20 meters, find the dimensions
that will maximize the area.

Solution: Let x denote the width and y the height of the rectangle in question. Both
the area A(x, y) = xy and the perimeter P (x, y) = 2x + 2y of the rectangle are
functions in the two variables x and y. The constrained optimization problem can
now be summarized as:

Maximize : A(x, y),
Constraint : P (x, y) = 20.

There is a simple method, using single-variable calculus, for solving this problem.
Since the implicit equation 2x + 2y = 20 can easily be recast as an explicit equation
y = 10 − x, we can substitute this explicit formula into A(x, y) to get a new function
f(x) = A(x, 10 − x) = 10x− x2. This is now a function of x alone, so we just have to
maximize the function f(x) = 10x − x2 on the interval [0, 10]. Since f ′(x) = 10 − 2x
we see that x = 5 is a stationary point for f(x). Since f ′′(5) = −2 < 0, the Second
Derivative Test tells us that x = 5 is a local maximum for f , and hence x = 5 must
be the global maximum on the interval [0, 10] (since the interval is compact and the
function f equals 0 at the endpoints of the interval). So since y = 10 − x = 5, then
the maximum area occurs for a rectangle whose width and height are both equal to 5
meters.

Notice in the above example that the ease of the solution depended on being able
to solve the constraint equation for one variable in terms of the other. However, this is
not always possible, especially when the constraint equation is more complicated and
when there are more variables involved. In this case, the hands-on task of solving the
constraint equation in terms of one of the variables is replaced by an application of
the Implicit Function Theorem.

The general type of constrained optimization problem that we are interested in is:

Maximize (or minimize) : f(x1, . . . , xn),
Constraint : g(x1, . . . , xn) = c.

The function being maximized or minimized, f(x1, . . . , xn), is called the objective func-
tion. The function, g(x1, . . . , xn), whose level set at height c represents the constraint,
that is, all the values allowed to be considered for the optimization, is called the con-
straint function. Points (x1, . . . , xn) which yield maxima or minima of f(x1, . . . , xn)
with the condition that they satisfy the constraint equation g(x1, . . . , xn) = c are called
constrained maximum points or constrained minimum points, respectively.

A constrained optimization problem in two variables has an illustrative geomet-
ric interpretation. Indeed, if the input space is two-dimensional, then the graph of
the objective function f(x, y) is a 3 dimensional surface and the constraint equation
g(x, y) = c is a curve in 2 dimensions. We can projected the curve (in red) onto
the surface (in blue) as shown in Fig. 3.11. The goal of the constrained optimization
problem is simply to find the highest (resp. lowest) point on that red line.
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Figure 3.11: Constrained optimization problem in two variables.

In Fig. 3.11 we see that the highest point on the red line is the point where the
red line is tangent to a level curve of f(x, y). But the red line is itself a level curve
coming from the function g(x, y). So the core idea is to look for points where the level
curves of f(x, y) and g(x, y) are tangent. This is the same as finding points where the
gradient vectors ∇f and ∇g are are parallel to each other (see Fig. 3.12). In other
words, there exists some λ ∈ R such that ∇f = λ∇g.

Figure 3.12: Maximization of function f(x, y) subject to the constraint g(x, y) = 0.
At the constrained local extreme value, the gradients of f and g, namely ∇f(x, y) and
∇g(x, y), are parallel.

In general, the Lagrange multiplier method for solving constrained optimization
problems can be stated as follows.

Theorem 3.11 (Lagrange Multiplier Theorem). Consider an open set E ⊆ Rn, two
functions f, g : E → R of class C1(E) and let c ∈ R be a constant. If the function f
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restricted to the level set {x ∈ E : g(x) = c} achieves a local extreme value at a point
a and additionally ∇g(a) ̸= 0 then there must be a scalar number λ ∈ R such that
∇f(a) = λ∇g(a). The number λ is called the Lagrange multiplier.

Example 3.18. For a rectangle whose perimeter is 20 m, use the Lagrange multiplier
method to find the dimensions that will maximize the area.

Solution: As we saw in Example 3.17, with x and y representing the width and height,
respectively, of the rectangle, this problem can be stated as:

Maximize : A(x, y) = xy

Constraint equation : P (x, y) = 2x+ 2y = 20

In light of Theorem 3.11, the above can only have a solution when ∇A(x, y) =
λ∇P (x, y) for some λ. Since ∇A(x, y) = (y, x) and ∇P (x, y) = (2, 2), we need to
solve the system of equations

y = 2λ ,
x = 2λ.

The general idea is to solve for λ in both equations, then set those expressions equal
(since they both equal λ) to solve for x and y. Doing this we get

y

2 = λ = x

2 =⇒ x = y.

Substituting either of the expressions for x or y into the constraint equation, we obtain

20 = g(x, y) = 2x+ 2y = 2x+ 2x = 4x =⇒ x = 5 =⇒ y = 5.

Hence there must be a maximum area, since the minimum area is 0 and f(5, 5) =
2S > 0, so the point (5, 5) that we found (called a constrained critical point) must be
the constrained maximum. Therefore the maximum area occurs for a rectangle whose
width and height both are 5 meters.

Example 3.19. Let us find the constrained extreme values of the expression x + z
subject to the constrained g(x, y, z) = x2 + y2 + z2 = 1. In other words,

Maximize (and minimize) : f(x, y, z) = x+ z,

Constrained equation : g(x, y, z) = x2 + y2 + z2 = 1.

By Theorem 3.11, the strategy is to look for solutions to the equation ∇f(x, y, z) =
λ∇g(x, y, z). Since ∇f(x, y, z) = (1, 0, 1) and ∇g(x, y, z) = (2x, 2y, 2z), we have

1 = 2λx
0 = 2λy
1 = 2λz

The first equation implies λ ̸= 0 (otherwise we would have 1 = 0), so we can divide
by λ in the second equation to get y = 0 and we can divide by λ in the first and
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third equations to get x = 1
2λ

= z. Substituting these expressions into the constraint
equation g(x, y, z) = x2 + y2 + z2 = 1 yields the constrained critical points ( 1√

2 , 0,
1√
2)

and ( −1√
2 , 0,

−1√
2). Since f( 1√

2 , 0,
1√
2) > f( −1√

2 , 0,
−1√

2), and since the constraint equation
x2 + y2 + z2 = 1 describes a sphere (which is bounded) in R3, then ( 1√

2 , 0,
1√
2) is the

constrained maximum point and ( −1√
2 , 0,

−1√
2) is the constrained minimum point.

Example 3.20. We aim to prove that for any m-tuple of positive real numbers
(α1, . . . , αm), the following inequality holds:

m
√
α1 · . . . · αm ⩽

α1 + . . .+ αm

m
.

In other words, the geometric mean of a finite number of elements from R∗
+ is never

greater than their arithmetic mean.
Given an arbitrary m-tuple of positive real numbers

α = (α1, . . . , αm),

let us consider the set

E = {(x1, . . . , xm) ∈ Rm : x1 ⩾ 0, . . . , xm ⩾ 0}

and define two functions f, g : E → R by

f(x1, . . . , xm) = m
√
x1 · . . . · xm,

g(x1, . . . , xm) = x1 + . . .+ xm − β, where β = α1 + . . .+ αm.

Given that

E1 = {(x1, . . . , xm) ∈ E | g (x1, . . . , xm) = 0}

is a compact subset of Rm and f is continuous, there exists at least one element
a = (a1, . . . , am) in E1 where the restriction of f to E1 achieves its maximum. The
method of Lagrange multipliers asserts that this maximum, referred to as a constrained
maximum, occurs in the following cases:

1) a1 · . . . · am = 0,
2) a1 · . . . · am > 0 and there exists a real number λ such that



∂f

∂x1
(a) + λ

∂g

∂x1
(a) = 0,

...

∂f

∂xm

(a) + λ
∂g

∂xm

(a) = 0.

In the first case, we have f(a) = 0. Observing that ( β
m
, . . . , β

m
) ∈ E1 and that

f( β
m
, . . . , β

m
) > 0, we conclude that the first case does not occur for a point a where
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the constrained maximum is achieved. In the second case, f is indeed of class C1 in
the vicinity of a and there exists a real number λ such that

1
m

m
√
a1 · . . . · am

a1
+ λ = 0,

...

1
m

m
√
a1 · . . . · am

am

+ λ = 0.

Therefore, by solving this system and taking into account that a1 + . . .+ am = β, we
deduce that

a1 = . . . = am = β

m
,

and thus the constrained maximum is achieved at a =
(

β
m
, . . . , β

m

)
∈ E1. Finally, since

α = (α1, . . . , αm) ∈ E1, we can state that

m
√
α1 · . . . · αm = f(α) ⩽ f(a) = m

√
a1 · . . . · am = β

m
= α1 + . . .+ αm

m
.

Example 3.21. Consider a situation in which ∇g(x0, y0) ̸= 0 is not satisfied, and
thus the theorem cannot be applied to the functions f(x, y) = x2 + y and g(x, y) = y2.
Clearly, f admits a local minimum at (x0, y0) = (0, 0) under the constraint g(x0, y0) =
0, since f(x, 0) = x2.

Moreover, we have

∇f(x, y) =
(

2x
1

)
, ∇g(x, y) =

(
0
2y

)
,

∇f(0, 0) =
(

0
1

)
, ∇g(0, 0) =

(
0
0

)
,

hence there exists no λ ∈ R such that

∇f(0, 0) = λ∇g(0, 0).

Here, ∇g(x0, y0) ̸= 0 is not satisfied.

In fact, ∇g(x, y) =
(

0
2y

)
for all (x, y) ∈ R2 st. g(x, y) = 0.

Intuitive Explanation for the Theorem: We argue by contradiction and
assume that the calculation is false. That is, ∇f(x0, y0) is not a multiple of ∇g(x0, y0)
(in particular ∇f(x0, y0) ̸= 0). Fix c = f(x0, y0) ∈ R. Since ∇f(x0, y0) is orthogonal
to the level set Lc(f) at (x0, y0), and ∇g(x0, y0) is orthogonal to the level set L0(g) at
(x0, y0), we deduce that Lc(f) crosses L0(g) without being tangent to it. This implies
that for ε > 0 small enough, L0(g) also crosses Lc+ε(f) and Lc−ε(f). In particular, f
does not have a local extremum at (x0, y0).
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Example 3.22. Consider a box without a cover.

Volume = abc,

Surface Area = ab+ 2ac+ 2bc.

Find all those boxes of maximal volume for a given surface area S > 0. We put
x = ab, y = ac, z = bc, so f(x, y, z) = √

xyz represents the volume.

g(x, y, z) = x+ 2y + 2z − S = 0, E =
{
(x, y, z) ∈ R3 : x ⩾ 0, y ⩾ 0, z ⩾ 0

}
.

For x, y, z, we recover a, b, c as: a =
√

xy
z
, b =

√
xz
y
, c =

√
yz
x

. Moreover, xyz = 0 ⇔
abc = 0 ⇔ zero volume (not maximal). We look for (x0, y0, z0) ∈ E such that f reaches
its maximum under the constraint g(x, y, z) = 0. Since {(x, y, z) ∈ E : g(x, y, z) = 0}
is compact (closed and bounded), and f is continuous, such a maximum (x0, y0, z0)
exists.

Observe, moreover, that ∇g(x, y, z) = (1, 2, 2) ̸= 0. We then search for (x, y, z) ∈ E
and λ ∈ R such that: {

∇f(x, y, z) = λ∇g(x, y, z)
g(x, y, z) = 0

That is, we have:
1

2√
xyz

yz = λ

1
2√

xyz
xz = 2λ

1
2√

xyz
xy = 2λ

x+ 2y + 2z − S = 0

Substituting, we get:

xz = 2yz (1)
xy = 2yz (2)
x+ 2y + 2z − S = 0 (3)

From equations (1) and (2), we obtain y = x
2 and z = x

2 . Substituting into (3), we
have:

x+ x+ x− S = 0 =⇒ x = S

3
Thus,

x = S

3 , y = S

6 , z = S

6 , and f(x, y, z) =
√
S

3 · S6 · S6 = 1
6

√
S3

3 > 0.

For all points (x, y, z) on the boundary of E, denoted as ∂E, the function f satisfies
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f(x, y, z) = 0 < 1
6

√
S3

3 . Therefore, the final solution is given by the point (x0, y0, z0) =(
S
3 ,

S
6 ,

S
6

)
.

In terms of variables (a, b, c), we have:

a0 =
√
x0y0

z0
=
√
S

3 , b0 =
√
S

3 , c0 = 1
2

√
S

3 .





Chapter 4

Parametric Curves in Rn

We now turn our attention to a particularly important case of vector-valued functions,
where the domain is an interval of R and its range is a subset of Rn with n ⩾ 2, in
which case there exist specific notions and terminology.

Definition 4.1 (Parametric Curve). Let n ⩾ 1 be an integer. Given a non-empty
interval I ⊆ R, a (vector-valued) function of the from f : I → Rn is called a parametric
curve in Rn.

Given a parametric curve

f(t) =


f1(t)
...

fn(t)

 , t ∈ I,

the functions f1, . . . , fn are called the component functions of f . The interval I is called
the parameter interval of the curve and the variable t is the parameter. The image of
f

Im f = {f(t) : t ∈ I}

is also called the trace of f . Parametric curves are often used to describe the path of
a moving particle in space, where the particle’s position, represented as a point in R3,
varies with a single time-parameter t. The image of the parametric curve corresponds
to the trajectory “traced” by the moving particle, thus earning the name trace.

Example 4.1 (Helix). For r > 0 and c ∈ R let f : R → R3 be given by

f(t) =

 r cos t
r sin t
ct


77
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Figure 4.1: Helix

Example 4.2 (A non-injective curve). Let f : R → R2 be the function

f(t) =
(
t2 − 1
t3 − t

)

We have f(−1) = f(1) = 0 and

Im(f) = f(R) =
{
(x, y) ∈ R2 : x2 + x3 = y2

}

Example 4.3. Let us find a parametric curve whose trace represents the curve of
intersection of the cylinder x2 + y2 = 1 and the plane y + z = 2 (see Fig. 4.2).

Let C denote the parametric curve that we are seeking. The projection of C onto
the xy-plane is the circle x2 + y2 = 1, z = 0. The parametrization of this circle is
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given by

x(t) = cos(t), y(t) = sin(t), t ∈ [0, 2π).

From the equation of the plane, we have

z(t) = 2 − y(t) = 2 − sin(t), t ∈ [0, 2π).

So we can write parametric function tracing the curve C as

r(t) =

x(t)
y(t)
z(t)

 , t ∈ [0, 2π),

where

x(t) = cos(t), y(t) = sin(t), and z(t) = 2 − sin(t).

The arrows on the right in Fig. 4.2 indicate the direction in which C is traced by the
parametric curve r(t) as the parameter t ranges from 0 to 2π.

Figure 4.2

4.1 Continuity and Differentiability of Parametric
Curves

Definition 4.2 (Continuity). A parametric curve f : I → Rn is continuous at t0 ∈ I
if and only if, for every real number ε > 0, there exists a real number δ > 0 such that
for all t ∈ I,

|t− t0| ⩽ δ =⇒ ∥f(t) − f(t0)∥2 ⩽ ε.

If f : I → Rn is continuous at every t ∈ I then f is also referred to as a path in Rn.
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Proposition 4.1. Suppose f(t) : I → Rn is a parametric curve in Rn and

f(t) =


f1(t)
...

fn(t)


are its components functions. Then f(t) is continuous at t0 if and only if all of its
component functions f1(t), . . . , fn(t) are continuous at t0.

Definition 4.3 (Differentiability). We say that the curve f is differentiable at t0 ∈ I
and that its tangent vector (or velocity vector) at t0 is f ′(t0) ∈ Rn if

lim
t→t0

∥∥∥∥∥f(t) − f(t0)
t− t0

− f ′(t0)
∥∥∥∥∥

2
= 0.

If f is differentiable at t0 and f ′(t0) ̸= 0 then the vector
1

∥f ′(t0)∥2
f ′(t0)

is called the unit tangent vector.

Proposition 4.2. Suppose f(t) : I → Rn is a parametric curve in Rn and

f(t) =


f1(t)
...

fn(t)


are its components functions. Then f(t) is differentiable at t0 if and only if all of its
component functions f1(t), . . . , fn(t) are differentiable at t0. In this case,

d

dt
f(t0) = f ′ (t0) =


f ′

1(t0)
...

f ′
n(t0)

 .
The next theorem shows that the differentiation formulas for real-valued functions

have their counterparts for parametric curves.

Theorem 4.1. Suppose u and v are differentiable parametric curves, c is a scalar,
and g is a differentiable real-valued function in one variable. Then:

1. d
dt

[u(t) + v(t)] = u′(t) + v′(t)

2. d
dt

[cu(t)] = cu′(t)

3. d
dt

[g(t)u(t)] = g′(t)u(t) + g(t)u′(t) (Product Rule for Scalar Products)
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4. d
dt

[u(t) · v(t)] = u′(t) · v(t) + u(t) · v′(t) (Product Rule for Dot Products)

5. d
dt

[u(g(t))] = u′(g(t))g′(t) (Chain Rule)

Definitions 4.1. Let f : I → Rn be a parametric curve with component functions
f1, . . . , fn. Let k ⩾ 1 be an integer. If the derivatives f (m)

j exist and are continuous on
I for all 1 ⩽ m ⩽ k and all 1 ⩽ j ⩽ n, then the curve f is said to be of class Ck(I). If
f is of class Ck(I) for all k ⩾ 1, it is said to be of class C∞(I).

Example 4.4. Consider the curve

x = t3 − t, y = e2t, z = cos(3t).

Let us find the equation of the tangent line at t = 1.

First, we compute the Velocity Vector:

v(t) =
(
d

dt
(t3 − t), d

dt
e2t,

d

dt
cos(3t)

)
= (3t2 − 1, 2e2t,−3 sin(3t)).

At t = 1, this yields

v(1) = (3(1)2 − 1, 2e2,−3 sin 3) = (2, 2e2,−3 sin 3).

We also need the point of tangency, which is

P = (13 − 1, e2(1), cos(3(1))) = (0, e2, cos 3).

We can now write the tangent line equations (in parametric form) as

x = 0 + 2s, y = e2 + 2e2s, z = cos 3 − 3 sin 3 · s.

Thus, the tangent line at (0, e2, cos 3) follows the direction (2, 2e2,−3 sin 3).

4.2 Motion in Space: Velocity and Acceleration

We can use vector-valued functions to represent physical quantities, such as velocity,
acceleration, force, momentum, etc. For example, let the real variable t represent time
elapsed from some initial time (such as t = 0), and suppose that an object of constant
mass m is subjected to some force so that it moves in 3-dimensional space, with its
position (x, y, z) at time t a function of t. That is, x = x(t), y = y(t), z = z(t) for
some real-valued functions x(t), y(t), z(t). Call r(t) = (x(t), y(t), z(t)) the position
vector of the object. We can define various physical quantities associated with the
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object as follows:

position: r(t) =

x(t)
y(t)
z(t)


velocity: v(t) = ṙ(t) = r ′(t) = dr

dt

=

x
′(t)
y′(t)
z′(t)


acceleration: a(t) = v̇(t) = v ′(t) = dv

dt

= r̈(t) = r ′′(t) = d2r
dt2

=

x
′′(t)
y′′(t)
z′′(t)


momentum: p(t) = mv(t)

force: F(t) = ṗ(t) = p ′(t) = dp
dt

(Newton’s Second Law of Motion)

The magnitude ∥v(t)∥2 of the velocity vector is called the speed of the object. Note that
since the mass m is a constant, the force equation becomes the familiar F(t) = ma(t).

Example 4.5. Let us show that if ∥r(t)∥2 = c (a constant) then r′(t) is orthogonal
to r(t) for all t.

To prove this claim, we will simply use the product rule for dot products (cf. The-
orem 4.1). Since

r(t) · r(t) = ∥r(t)∥2
2 = c2

and c2 is a constant, we have
d

dt

(
r(t) · r(t)

)
= 0.

By the product rule, the left hand side is
d

dt

(
r(t) · r(t)

)
= r′(t) · r(t) + r(t) · r′(t) = 2r′(t) · r(t).

Thus r′(t) · r(t) = 0, which says that r′(t) and r(t) are orthogonal.

Example 4.6. An object with mass m that moves in a circular path with constant
angular speed ω has position vector r(t) = (a cos(ωt), a sin(ωt)). Find the force acting
on the object and show that it is directed toward the origin.
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To find the force, we first need to know the acceleration:

v(t) = r′(t) =
(

−aω sin(ωt)
aω cos(ωt)

)

a(t) = v′(t) =
(

−aω2 cos(ωt)
−aω2 sin(ωt)

)
.

Therefore Newton’s Second Law gives the force as

F(t) = ma(t) = −mω2
(
a cos(ωt)
a sin(ωt)

)
.

Notice that F(t) = −aω2r(t). This shows that the force acts in the direction opposite
to the radius vector r(t) and therefore points toward the origin. Such a force is called
a centripetal (center-seeking) force.

4.3 Arc Length
Definition 4.4 (Length of a Curve Arc). Let there be a curve f : I → Rn of class
C1(I) and let a < b ∈ I. The arc length of the curve f : [a, b] → Rn is defined as

L(f) =
∫ b

a
∥f ′(t)∥2 dt.

Given that the interval [a, b] is closed and bounded, L(f) < +∞.
Example 4.7. In R2, consider the circle with center c = (c1, c2) and radius r > 0
parameterized by

f(θ) =
(
c1 + r cos(aθ)
c2 + r sin(aθ)

)
= c + r

(
cos(aθ)
sin(aθ)

)
, θ ∈ R

where a > 0 is a constant. The length of the curve arc f : [0, 2π/a] → R2 is∫ 2π/a

0
ra dθ = 2πr.

Example 4.8. Given a continuously differentiable function g : I → R, consider its
parameterized graph:

f(t) =
(

t
g(t)

)
, t ∈ I.

For a < b ∈ I, the arc length of the graph is therefore given by∫ b

a
∥f ′(t)∥2 dt =

∫ b

a

√
1 + (g′(t))2 dt.

Proposition 4.3 (Derivative of an Integral Depending on a Parameter). Let a < b
be two real numbers, I an open interval, and f : [a, b] × I → R a continuous function
whose partial derivative with respect to the second variable exists and is continuous
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on [a, b] × I. Then, the function F : I → R defined by

F (t) =
∫ b

a
F (x, t) dx

is continuously differentiable on I and, moreover, for every t ∈ I, we have:

F ′(t) =
∫ b

a

∂f

∂t
(x, t) dx.

Proposition 4.4. Let a, b : R → R be of class C1(R), and f : R2 → R of class C1(R2),
and define F (t) by

F (t) =
∫ b(t)

a(t)
f(x, t) dx.

Then F is continuously differentiable on R and

F ′(t) = F (b(t), t) · b′(t) − F (a(t), t) · a′(t) +
∫ b(t)

a(t)

∂f

∂t
(x, t) dx.

Example 4.9. 1) Given F (t) =
∫ π

0
sin(tx)

x
dx, let us calculate F ′

(
1
4

)
. First, note that

f(x, t) is of class C1(R2) (which needs verification!). So it follows that

F ′(t) =
∫ π

0

cos(tx)x
x

dxF ′(t) =
∫ π

0

cos(tx)x
x

dx

=
[1
t

sin(tx)
]x=π

x=0

= 1
t

sin(πt).

Hence, we have

F ′
(1

4

)
= 4 sin

(
π · 1

4

)
= 4 ·

√
2

2 = 2
√

2

2) Next let us find F ′
(

1
4

)
when F (t) =

∫ t2

0
sin(tx)

x
dx. We have

F ′(t) = 1
t2

sin
(
t · t2

)
· (2t) +

[1
t

sin(tx)
]x=t2

x=0

= 2
t

sin
(
t3
)

+ 1
t

sin
(
t3
)

= 3
t

sin
(
t3
)
.

This now gives

F ′
(1

4

)
= 12 sin

( 1
64

)
.



Chapter 5

Vector Calculus

In this chapter, we study the calculus of multivariable vector-valued functions and
vector fields. These are functions that assign vectors to points in space.

5.1 Functions with values in Rm

A vector-valued function, sometimes also referred to as a vector function, is a math-
ematical function of one or more variables whose output values are multidimensional
vectors. In other words, it is a function of the form f : E → Rm whose domain
dom(f) = E is a subset of Rn and its image im(f) = {f(x) : x ∈ E} is a subset of Rm.
Every vector-valued function f : E → Rm can be viewed as an m-tuple of real-valued
functions,

f(x) =


f1(x)
...

fm(x)

 ∈ Rm,

where f1, . . . , fm : E → R are called the component functions of f .
We have already encountered several types of vector-valued functions in this course.

For example, in Chapter 4 we discussed vector-valued functions of the form f : R →
Rm, called parametric curves. Also, in Section 3.1 we introduced the gradient vector
∇f(x) and in Section 3.6 the Hessian matrix Hess(f)(x), which are both examples
of vector-valued functions. Indeed, ∇f : Rn → R1×n is a vector-valued function with
domain Rn and codomain R1×n ∼= Rn (where we can identify the space of n-dimensional
row vectors R1×n with the space of n-dimensional column vectors Rn), and the Hessian
matrix Hess(f) : Rn → Rn×n is a vector-valued function with domain Rn and codomain
Rn×n ∼= Rn2 (where we can identify the space of n × n matrices with the euclidean
vector space Rn2 of dimension n2).

85
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5.2 Limits and Continuity of Vector-valued Func-
tions

The concepts of limits and continuity can be extended to functions f : Rn → Rm in a
straightforward manner.

Definition 5.1. Let f : E → Rm with E ⊆ Rn. We say that f is defined in a neigh-
borhood of a if a is an interior point of E ∪ {a}.

Definition 5.2 (Limit of a function). Let a be a point in Rn, and let f : E → Rm

with E ⊆ Rn be a vector-valued function defined in a neighborhood of a. Then we
say that the limit of f(x) equals L ∈ Rm as x approaches a, written as

lim
x→a

f(x) = L, (5.1)

if given any ε > 0, there exists δ > 0 such that

0 < ∥x − a∥2 < δ =⇒ ∥f(x) − L∥2 < ε.

It is sufficient to check component functions for limits of vector-valued functions,
as evidenced by the next proposition, because the convergence of each component
function guarantees the convergence of the vector-valued function as a whole.

Proposition 5.1. Suppose f : E → Rm is a vector-valued function defined in a neigh-
borhood of a ∈ Rn. If

f(x) =


f1(x)
...

fm(x)

 and L =


L1
...
Lm


then lim

x→a
f(x) = L if and only if lim

x→a
fi(x) = Li for all 1 ⩽ i ⩽ m.

Definition 5.3 (Continuity at a point). Let a be an interior point of E. A function
f : E → Rm is continuous at a if and only if, for every real number ε > 0, there exists
a real number δ > 0 such that for all x ∈ E,

∥x − a∥2 ⩽ δ =⇒ ∥f(x) − f(a)∥2 ⩽ ε.

Continuity for vector-valued functions is ensured if and only if all component func-
tions are continuous, akin to the situation with limits. This allows known principles
about continuity of real-valued functions to generalize directly to vector-valued func-
tions, as the following proposition demonstrates

Proposition 5.2. Suppose

f(x) =


f1(x)
...

fm(x)

 : E → Rm
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is a vector-valued function and a an interior point of E. The following are equivalent:

(i) f(x) is continuous at a;
(ii) limx→a f(x) = f(a);
(iii) for every sequence (ak)k∈N of elements of E we have

lim
k→+∞

ak = a =⇒ lim
k→+∞

f(ak) = f(a);

(iv) fi(x) is continuous at a for all 1 ⩽ i ⩽ m.

Remark 5.1. Now that we understand what it means for a vector-valued function to
be continuous, we can revisit the definition of the class of C1 and C2 functions given
in Chapter 3. Let E ⊆ Rn be an open set and let f : E → R be a real-valued function
in n variables. In light of Proposition 5.2, we see that f is of class C1(E), as specified
in Definition 3.7, if and only if the gradient vector ∇f : E → Rn is continuous as a
vector-valued function. Similarly, f is of class C2(E), as specified in Definition 3.11,
if and only if its Hessian matrix Hess(f) : E → Rn×n is a continuous vector-valued
function from E to Rn×n ∼= Rn2 .

5.3 Partial and Directional Derivatives of Vector-
valued Functions

The partial derivatives of a multivariable real-valued function are real numbers (see
Definition 3.1). In analogy, the partial derivatives of a multivariable vector-valued
function are vectors.

Definition 5.4 (Partial derivatives). Let E ⊆ Rn be open and f : E → Rm a vector-
valued function in the variables x1, . . . , xn. Then f has a partial derivative at the point
a ∈ E with respect to the variable xj if each of its component functions f1, . . . , fm

has a partial derivative at the point a with respect to the variable xj. In this case, we
denote the partial derivative of f with respect to the variable xj as an m-dimensional
column vector:

∂f
∂xj

(a) =



∂f1
∂xj

(a)
∂f2
∂xj

(a)
...

∂fm

∂xj
(a)

 .

Definition 5.5 (Jacobian matrix). Let E ⊆ Rn be an open set, let f : E → Rm be a
function and suppose all partial derivatives ∂f

∂x1
(a), . . . , ∂f

∂xn
(a) of f at the point a ∈ E
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exist. The matrix

Df(a) = Jf (a) =


∂f1
∂x1

(a) ∂f1
∂x2

(a) · · · ∂f1
∂xn

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) · · · ∂f2
∂xn

(a)
...

...
...

∂fm

∂x1
(a) ∂fm

∂x2
(a) . . . ∂fm

∂xn
(a)


is called the Jacobian matrix or the Jacobian of f at the point a. It is an m×n matrix,
i.e., it has m rows and n columns. The columns correspond to the partial derivatives
∂f

∂x1
(a), . . . , ∂f

∂xn
(a), whereas the rows correspond to the gradients of the component

functions ∇f1(a), . . . ,∇fm(a).

When m = n, the Jacobian matrix is a square matrix and its determinant

D(f1, . . . , fn)
D(x1, . . . , xn)(a) = det Jf (a) =

∣∣∣∣∣∣∣∣∣∣∣

∂f1
∂x1

(a) ∂f1
∂x2

(a) . . . ∂f1
∂xn

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) . . . ∂f2
∂xn

(a)
...

...
...

∂fn

∂x1
(a) ∂fn

∂x2
(a) . . . ∂fn

∂xn
(a)

∣∣∣∣∣∣∣∣∣∣∣
is denoted as D(f1,...,fn)

D(x1,...,xn)(a) and called the Jacobian determinant of f at the point a.

Example 5.1. If f : R2 → R2 is f(x, y) = (xy, x+ y), then Jf (1, 2) can be calculated
as

Jf (x, y) =
(
y x
1 1

)
and hence Jf (1, 2) =

(
2 1
1 1

)
.

Example 5.2. Suppose f : Rn → Rm is differentiable at a ∈ Rn.
• if n = m = 1 then f is a real-valued single-variable function and its Jacobian

Jf (a), which is 1 × 1 matrix, coincides with the derivative f ′(a).
• if m = 1 and n is arbitrary then f is a real-valued function in n variables and its

Jacobian Jf (a), which is a 1 × n matrix, is the same as the gradient ∇f(a).
• if n = 1 and m is arbitrary then f is a parametric curve in Rm and its Jacobian

Jf (a) is the same as the tangent vector f ′(a).

Definition 5.6 (Directional derivatives). Let E ⊆ Rn be open and f : E → Rm

a vector-valued function. Then f has a directional derivative along the vector v ∈
Rn\{0} at the point a ∈ E if each of its component functions f1, . . . , fm has a di-
rectional derivative along v at the point a. In this case, we denote the directional
derivative of f along v as an m-dimensional column vector:

∇vf(a) =


∇vf1(a)
∇vf2(a)

...
∇vfm(a)

 .

When ∥v∥2 = 1, it is also called the derivative in the direction v.
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5.4 Differentiability of Vector-valued Functions

We have already learned what it means for functions Rn → R to be differentiable
(see Definition 3.4), and what it means for functions R → Rm to be differentiable
(see Definition 4.3). The following definition encompasses both of these cases and
provides the general framework to discuss differentiability for multivariable vector-
valued functions.

Definition 5.7 (Differentiability at a point). Let E be a non-empty subset of Rn. A
function f : E → R is differentiable at the point a ∈ E if there exists a linear map
La : Rn → Rm such that

lim
h→0

∥∥∥f (a + h) − f(a) − La(h)
∥∥∥

2
∥h∥2

= 0.

In this case, the linear map La : Rn → Rm is called the differential of f at the point a.

Proposition 5.3. Let f : E → Rm and a ∈ E ⊆ Rn. Then f is differentiable at a if
and only if all its component functions f1, . . . , fm are differentiable at a.

Theorem 5.1 (Fundamental theorem). Suppose f : E → Rm is differentiable at a
point a ∈ E. Then the following statements hold.

(i) f is continuous at a.
(ii) All partial derivatives of f at the point a exist, the Jacobian matrix Jf (a) of f

at the point a exists, and the differential La : Rn → Rm of f at the point a is
the same as matrix multiplication with the Jacobian matrix, i.e.,

La(v) = Jf (a) · v, ∀v ∈ Rn.

(iii) All directional derivatives of f at the point a exist and are given by

∇vf(a) = Jf (a) · v, ∀v ∈ Rn.

(iv) For all x ∈ E we have

f(x) = f(a) + Jf (a) · (x − a) + r1(x),

where r1 is an “error” term satisfying

lim
x→a

∥r1(x)∥2

∥x − a∥2
= 0.

The function

t(x) = f(a) + Jf (a) · (x − a)

is called the linearization (or linear approximation) of f at the point a.
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Among other things, the above theorem implies that if f is differentiable at a then

∇vf(a) =


∇vf1(a)
∇vf2(a)

...
∇vfm(a)

 =


⟨∇f1(a),v⟩
⟨∇f2(a),v⟩

...
⟨∇fm(a),v⟩

 = Jf (a) · v =
n∑

j=1
vj
∂f
∂xj

(a)

for all v = (v1, . . . , vn) ∈ Rn\{0}.

Example 5.3. Let f : R2 → R2 with f(1, 2) = (3,−1) and Jf (1, 2) =
(

1 −1
−3 0

)
. We can

use this limited amount of information to approximate f(1.1, 1.8). Indeed, the linear
approximation of f at the point (1, 2) is

t(x, y) = f(1, 2) + Jf (1, 2) ·
((

x
y

)
−
(

1
2

))

=
(

3
−1

)
+
(

1 −1
−3 0

)
·
(
x− 1
y − 2

)

=
(
x− y + 4

2 − 3x

)
.

Thus, as an approximation of f(1.1, 1.8) we obtain

f(1.1, 1.8) ≈ t(1.1, 1.8) =
(

3.3
−1.3

)
.

5.5 Vector-Valued Functions of Class C1

Definition 5.8. Let E ⊆ Rn be an open set and let f : E → Rm be a function. We
say that f is of class C1(E) if all partial derivatives ∂f

∂x1
(a), . . . , ∂f

∂xn
(a) of f exist and

are continuous at every point a ∈ E.

It follows from the definition that f : E → Rm is of class C1(E) if and only if
the Jacobian matrix Jf (a) exists at every point a ∈ E and the map Jf : E → Rm×n

is a continuous function. So, continuity of the Jacobian matrix is the multivariable
analogue of continuous differentiability for vector-valued functions.

Proposition 5.4. Let E ⊆ Rn be an open set, let f : E → Rm be a function, and let
f1, . . . , fm : E → R be its component functions. Then f is of class C1(E) if and only
if all its component functions f1, . . . , fm are of class C1(E).

Recall that real-valued functions of class C1 are always differentiable (cf. Propo-
sition 3.1). The next corollary, which follows by combining Proposition 3.1, Proposi-
tion 5.4 and Proposition 5.3, asserts that the same is true for vector-valued functions.

Corollary 5.1. Let E ⊆ Rn be an open set, let f : E → Rm be a function. If f is of
class C1(E) then f is differetniable at every point in E.
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5.6 The Chain Rule

The goal of this section is to introduce the chain rule for multivariable vector-valued
functions. As motivation, let us first recall the chain rule for single-variable functions
as you have learned it in Analysis I: If f : R → R and g : R → R are functions such
that g is differentiable at a point a and f is differentiable at the point g(a), then the
composition f ◦ g is differentiable at the point a, and its derivative is given by

(f ◦ g)′(a) = f ′(g(a)) · g′(a).

This expresses that the rate of change of f ◦ g at a is the product of the rate of change
of f at g(a) and the rate of change of g at a.

The following theorem is the appropriate generalization of the chain rule to higher
dimensions.

Theorem 5.2 (Chain Rule). Suppose we are given an open subset A ⊆ Rn, a function
g : A → Rp, an open subset B ⊆ Rp with g(A) ⊆ B, and a function f : B → Rq.
Therefore, the composite function f ◦ g : A → Rq is well-defined. If a ∈ A and
g(a) ∈ B such that g is differentiable at a and f is differentiable at g(a), then f ◦ g is
differentiable at a and and the Jacobian matrix Jf◦g(a) ∈ Rq×n is the matrix product
of the Jacobian matrices Jf (g(a)) ∈ Rq×p(R) and Jg(a) ∈ Rp×n:

Jf◦g(a) = Jf (g(a)) · Jg(a).

Furthermore, if n = p = q, then the following relationship for the Jacobian determi-
nants is obtained:

|Jf◦g(a)| = |Jf (g(a))| · |Jg(a)|.

Example 5.4. Let f : R2 → R and g : R2 → R2 with g(x, y) = (x2y, x − y) and
h = f ◦ g. Let us find ∂h

∂x
(1, 2), assuming that ∂f

∂x
(2,−1) = 3 and ∂f

∂y
(2,−1) = −2.

First, the Jacobian matrix of the function g(x, y) = (x2y, x− y) is

Jg(x, y) =
(

2xy x2

1 −1

)
.

Therefore, the Jacobian at the point (x, y) = (1, 2) equals

Jg(1, 2) =
(

4 1
1 −1

)
.

Also, we know that

g(1, 2) = (2,−1) and ∇f(2,−1) = (3,−2).

So, it follows form the chain rule that

∇h(1, 2) = ∇f(2,−1) · Jg(1, 2) = (3, −2) ·
(

4 1
1 −1

)
= (10, 5).
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We deduce that ∂h
∂x

(1, 2) = 10.

5.7 Method of Lagrange Multipliers – multiple con-
straints

In Lagrange multipliers for a single constraint, we introduce a new variable, usually
denoted as λ, called the Lagrange multiplier, to determine when the gradient of the
objective function is parallel to the gradient of the constraint function. When dealing
with multiple constraints, each constraint adds a new term with its respective Lagrange
multiplier. So, if we have m constraints then we introduce m Lagrange multipliers,
usually denoted as λ1, . . . , λm.

Theorem 5.3 (Lagrange Multiplier Theorem – multiple constraints). Consider an
open set E ⊆ Rn, functions f, g1, . . . , gm : E → R of class C1(E) and constants
c1, . . . , cm ∈ R. If the function f(x) achieves a local extreme value subject to the
constraints g1(x) = c1, . . . , gm(x) = cm at a point a ∈ E and additionally the vectors
∇g1(a), . . . ,∇gm(a) are linearly independent then there must exist scalar numbers
λ1, . . . , λm ∈ R such that ∇f(a) = ∑m

i=1 λi∇gi(a). The numbers λi are called the
Lagrange multipliers.

Example 5.5. The planes x+ y− z = 3 and x− y+ z = −1 intersect in a line. Find
the point on this line that is closest to the origin.

In other words, we have to minimize the function f(x, y, z) = x2 + y2 + z2 subject
to the two constraints

1. g1(x, y, z) = x+ y − z = 3,
2. g2(x, y, z) = x− y + z = −1.

To solve this problem using Lagrange multipliers, we need to take the partial deriva-
tives. We get

∇f(x, y, z) = (2x, 2y, 2z)

and

∇g1(x, y, z) = (1, 1,−1) ∇g2(x, y, z) = (1,−1, 1).

It is important do not forget checking linear dependence: The vectors (1, 1,−1) and
(1,−1, 1) are linearly independent. So we can use the method of Lagrange multipliers
and obtain

∇f(x, y, z) = λ1∇g1(x, y, z) + λ2∇g2(x, y, z)

which is equivalent to

(2x, 2y, 2z) = (λ1 + λ2, λ1 − λ2, λ2 − λ1).
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This leaves us with five equations:

2x = λ1 + λ2,

2y = λ1 − λ2,

2z = λ2 − λ1,

x+ y − z = 3,
x− y + z = −1.

Solving these equations simultaneously will give us the values of x, y, z, λ1, and λ2
at the critical points, which yield potential solutions to our optimization problem. In
particular, using some basic algebra, we obtain the solution

(x, y, z, λ1, λ2) = (1, 1,−1, 2, 0).

So the point that lies on both planes simultaneously and is closest to the origin is
(1, 1,−1).

5.8 Finding Global Extreme Values on compact sets
defined by inequalities.

In Section 3.11 we have seen a “3-step recipe” of how to find the global extreme values
of a functions of class C1 on a compact set. If the compact set is given by an inequality,
we can further refine this recipe as follows:

Finding Global Extreme Values on compact sets defined by inequal-
ities. Let D ⊆ Rn be open and let g : E → R be of class C1(E), where
E := {x ∈ D : g(x) ⩽ 0} ⊆ D. Suppose, moreover, that E is non-empty and
compact (i.e., closed and bounded). Let f : D → R be of class C1(D). In order to
find the points where f attains a global maximum or minimum in E, it suffices to
follow these steps:

1. Determine the stationary points of f in {x ∈ D : g(x) < 0}.
2. Determine the points x ∈ D such that g(x) = 0 and ∇g(x) = 0.
3. Determine the points x ∈ D such that g(x) = 0, ∇g(x) ̸= 0, and there exists
λ ∈ R that satisfies ∇f(x) = λ∇g(x).

4. Evaluate f at the points identified in steps 1, 2, and 3 above and compare
their corresponding values.

Remark 5.2.
• Do not forget to check 2!
• Do not forget to check that E is compact! Otherwise, we cannot be sure that f

attains its maximum and/or minimum.
Example 5.6. Let f : Rn → R be defined by f(x) = x1 · . . . · xn = ∏n

i=1 xi. Find the
extrema of the restriction of f to the closed unit ball.
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Here, g(x) = ∑n
i=1 x

2
i − 1 for x ∈ Rn. The functions f and g are continuously

differentiable, and the set E = {x ∈ Rn : g(x) ⩽ 0} is compact. Suppose first that
g(x) < 0, which is equivalent to ∥x∥2 < 1. In this region, any point with at least two
coordinates equal to zero is a stationary point of f , since the gradient of f vanishes
there.

We want to find x ∈ Rn and λ ∈ R such that:

∥x∥2 = 1,
x2 · . . . · xn = λ2x1,

x1x3 · · ·xn = λ2x2,
...

x1 · · ·xn−1 = λ2xn,

⇔



x1x2 · . . . · xn = 2λx2
1,

x1x2 · . . . · xn = 2λx2
2,

...

x1x2 · · ·xn = 2λx2
n.

Adding up all these equations, we obtain:

nf(x) = 2λ∥x∥2
2 = 2λ.

Therefore, λ = nf(x)
2 .

If f(x) = 0, then λ = 0 and ∇f(x) = 0, which implies that at least two coordinates
of x must be zero.

If f(x) ̸= 0, then we have:

f(x) = 2λx2
1 = 2λx2

2 = . . . = 2λx2
n.

This leads to xi = ± 1√
n

for all i ∈ {1, . . . , n}, and hence x =
(

± 1√
n
, . . . ,± 1√

n

)
︸ ︷︷ ︸

2n possibilities

.

Comparison:
• If ∃i ̸= j s.t. xi = xj = 0 ⇒ f(x) = 0.
• If x =

(
± 1√

n
, . . . ,± 1√

n

)
, then f(x) = ±

(
1√
n

)n
= ±n− n

2 .

Answer: If x =
(
± 1√

n
, . . . ,± 1√

n

)
with an even (respectively, odd) number of

negative signs, then f attains its maximum (respectively, minimum) in E, with value
n− n

2 (respectively, −n− n
2 ).

5.9 Vector Fields Rn → Rn

In general, a multivariable vector-valued function describes a mapping from Rn to Rm,
where n represents the input dimensions and m denotes the output dimensions. If the
number of input dimensions equals the number of output dimensions (i.e., n = m), then
such a function has called a vector field. Vector fields show up often in many natural
situations and find important applications. For example, in physics they describe
magnetic and electric fields or the velocity field of a fluid. Coordinate changes are also
applications Rn → Rn.
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Graphic representation. Let U ⊆ Rn. A vector field v : U → Rn is represented
graphically by an arrow (i.e. a vector) attached at each point x ∈ Rn.
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

Figure 5.1: Graphic representation of vector fields.

Example 5.7. Newton’s Law of force between two objects with masses m and M is

|F| = GmM

r2

where r is the distance between the objects and G is the gravitational constant. (This
is an example of an inverse square law.) Let’s assume that the object with mass M is
located at the origin in R3. For instance, M could be the mass of the earth and the
origin would be at its center. Let the position vector of the object with mass m be
x = (x, y, z). Then r = ∥x∥2, so r2 = ∥x∥2

2. The gravitational force exerted on this
second object acts toward the origin (compare with Example 4.6), and the unit vector
in this direction is

− x
∥x∥2

.

Therefore, the gravitational force acting on the object at x = (x, y, z) is

F(x) = −GmM

∥x∥3
2

x (5.2)
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(Physicists often use the notation r instead of x for the position vector, so you may
see (5.2) written in the form F = −

(
GmM

r3

)
r.)

An example of a vector field is the gravitational field, because it associates a vector,
the force F(x), with every point x in space.

Equation (5.2) is a compact way of writing the gravitational field, but we can also
write it in terms of its component functions by using the facts that x = xe1 +ye2 +ze3
and ∥x∥2 =

√
x2 + y2 + z2

F(x, y, z) = −GmMx

(x2 + y2 + z2)3/2 e1 + −GmMy

(x2 + y2 + z2)3/2 e2 + −GmMz

(x2 + y2 + z2)3/2 e3

The gravitational field F is pictured in Fig. 5.2.

Figure 5.2: Depiction of a gravitational vector field.

Example 5.8. Consider an electric charge Q located at the origin (0, 0, 0). According
to Coulomb’s Law, the electric force F(x) exerted by this charge on a point charge q
located at the position x = (x, y, z) is

F(x) = εqQ

∥x∥3
2
x (5.3)

where ε is a constant (that depends on the units used). For like charges, we have
qQ > 0 and the force is repulsive; for unlike charges, we have qQ < 0 and the force
is attractive. Notice the similarity between (5.2) and (5.3). Both vector fields are
examples of so-called force fields.

Instead of considering the electric force F, physicists often consider the electric
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field per unit charge:

E(x) = 1
q

F(x) = εQ

∥x∥3
2
x

Then E is a vector field on R3 called the electric field of Q.
If f : Rn → R is a real-valued function of n variables then its gradient ∇f is a

vector field on Rn and it is called the gradient vector field of f .
Definition 5.9. A vector filed F : Rn → Rn is called conservative if there exists a
real-valued function f : Rn → R such that F = ∇f . In this situation, f is called a
potential function for F.
Example 5.9. While not all vector fields are conservative, vector fields arising in
physics often are. For example, the gravitational field F in Example 5.7 is conservative
because if we define

f(x, y, z) = mMG√
x2 + y2 + z2

then

∇f(x, y, z) = ∂f

∂x
e1 + ∂f

∂y
e2 + ∂f

∂z
e3

= −mMGx

(x2 + y2 + z2)3/2 e1 + −mMGy

(x2 + y2 + z2)3/2 e2 + −mMGz

(x2 + y2 + z2)3/2 e3

= F(x, y, z).

A similar calculation can be done for the electric field E of a charge Q seen in Exam-
ple 5.8.
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